【題目】己知函數(shù),.

1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)的單調(diào)區(qū)間;

2)當時,求的取值范圍;

3)是否存在實數(shù)a,b, 使得函數(shù)上的值域也是?若存在,求出a,b的值,若不存在,說明理由.

【答案】(1)

單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為

(2) ;(3) 存在使得函數(shù)上的值域也是

【解析】

(1)根據(jù)函數(shù)圖像的變換分析即可.

(2)根據(jù)(1)中圖像可知,,再根據(jù)對應的解析式求得再代入求取值范圍即可.

(3),三種情況分析即可.

(1) 可看做向下平移3個單位得到

.再將軸下方的圖像沿軸向上翻折即可.

注意零點為且以為漸近線.

上單調(diào)遞減, 在上單調(diào)遞增

(2)(1)中圖像知,,且.

,.

,因為

.

的取值范圍為.

(3),故若存在實數(shù)a,b,使得函數(shù)上的值域也是,均不為.

①當,為減函數(shù),此時有,

不滿足

②當,因為,不滿足.

③當, 此時 .

是方程的兩根.解得.滿足.

綜上, 存在使得函數(shù)上的值域也是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)(其中為常數(shù)且)在處取得極值.

(1)當時,求的極大值點和極小值點;

(2)若上的最大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為數(shù)列的前n項和,,當n≥2時,,又

(1)求數(shù)列的通項公式;

(2)設數(shù)列落在區(qū)間內(nèi)的項數(shù)為,求數(shù)列的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的零點之和;

2)已知,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為常數(shù)),方程有兩個實根34

1)求的解析式;

2)設,解關于x的不等式;

3)已知函數(shù)是偶函數(shù),且上單調(diào)遞增,若不等式在任意上恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上,離心率為的橢圓過點

1)求橢圓的方程;

2)設不過原點的直線與該橢圓交于兩點,滿足直線的斜率依次成等比數(shù)列,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,多面體, 是正方形, 是梯形, , 平面, 分別為棱的中點

求證:平面平面;

求平面和平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,教育部發(fā)文確定新高考改革正式啟動,湖南、廣東、湖北等8省市開始實行新高考制度,從2018年下學期的高一年級學生開始實行.為了適應新高考改革,某校組織了一次新高考質(zhì)量測評,在成績統(tǒng)計分析中,高二某班的數(shù)學成績的莖葉圖和頻率分布直方圖因故都受到不同程度的損壞,但可見部分如下,據(jù)此解答如下問題:

1)求該班數(shù)學成績在的頻率及全班人數(shù);

2)根據(jù)頻率分布直方圖估計該班這次測評的數(shù)學平均分;

3)若規(guī)定分及其以上為優(yōu)秀,現(xiàn)從該班分數(shù)在分及其以上的試卷中任取份分析學生得分情況,求在抽取的份試卷中至少有份優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設,農(nóng)村的經(jīng)濟收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設前后農(nóng)村的經(jīng)濟收入構成比例.得到如下餅圖:

則下面結論中不正確的是

A. 新農(nóng)村建設后,種植收入減少

B. 新農(nóng)村建設后,其他收入增加了一倍以上

C. 新農(nóng)村建設后,養(yǎng)殖收入增加了一倍

D. 新農(nóng)村建設后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟收入的一半

查看答案和解析>>

同步練習冊答案