已知三棱柱ABCA1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AB1與底面ABC所成角的正弦值等于(  ).
A.B.C.D.
B
設(shè)A1在面ABC內(nèi)的射影為O,過OOHBCAB于點(diǎn)H,以O為坐標(biāo)原點(diǎn),OA、OHOA1分別為x軸、y軸、z軸建立空間直角坐標(biāo)系.設(shè)△ABC邊長為1,則A,B1.
ABC的法向量n=(0,0,1),則AB1與底面ABC所成角α的正弦值為sin α=|cos〈,n〉|=.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中點(diǎn).

(1)求證:B1C∥平面A1BD;
(2)求平面A1DB與平面DBB1夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,OACBD的交點(diǎn),EPB上任意一點(diǎn).

(1)證明:平面EAC⊥平面PBD
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PDAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在四棱錐中,底面為矩形,平面,點(diǎn)在線段上,平面.

(Ⅰ)證明:平面;
(Ⅱ)若,,求二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知斜三棱柱ABC-A′B′C′,設(shè)
AB
=
a
AC
=
b
,
AA′
=
c
,在面對(duì)角線AC′和棱BC上分別取點(diǎn)M、N,使
AM
=k
AC′
,
BN
=k
BC
(0≤k≤1),求證:三向量
MN
、
a
c
共面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在三棱錐中,平面,,則與平面所成角的正弦值為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,MPA中點(diǎn),連接DM,則DM與平面PAC所成角的大小是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.如圖,在四面體OABC中,G是底面ABC的重心,則等于
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知       ,       ,        

查看答案和解析>>

同步練習(xí)冊(cè)答案