【題目】在無窮數(shù)列中,,對于任意,都有,,設(shè),記使得成立的的最大值為

)設(shè)數(shù)列,,,寫出,的值.

)若為等差數(shù)列,求出所有可能的數(shù)列

設(shè),求的值.(用,,表示)

【答案】(1),;(2);(3).

【解析】

試題分析:(1)根據(jù)使得成立的的最大值為,即可寫出,的值;

(2)若為等差數(shù)列,先判斷,再證明,即可求出所有可能的數(shù)列

(Ⅲ)由,利用的定義能推導(dǎo)出

試題解析:

,則,

,,則

,

)由題可得,

可得

又∵使得成立的的最大值為

使得成立的的最大值為,

,

設(shè),則

,則

則當時,

時,

,

為等差數(shù)列,

∴公差

,

這與矛盾,

又∵

,

為等差數(shù)列,得

∵使得成立的的最大值為

,

又∵

,

∴數(shù)列中等于的項共有個,

個,

設(shè),,

,且,

∴數(shù)列等于的項有個,即個,

以此類推:數(shù)列中等于的項共有個.

即:

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018 年1月16日,由新華網(wǎng)和中國財經(jīng)領(lǐng)袖聯(lián)盟聯(lián)合主辦的2017中國財經(jīng)年度人物評選結(jié)果揭曉,某知名網(wǎng)站財經(jīng)頻道為了解公眾對這些年度人物是否了解,利用網(wǎng)絡(luò)平臺進行了調(diào)查,并從參與調(diào)查者中隨機選出人,把這人分為 兩類(類表示對這些年度人物比較了解,類表示對這些年度人物不太了解),并制成如下表格:

年齡段

歲~

歲~

歲~

歲~

人數(shù)

類所占比例

(1)若按照年齡段進行分層抽樣,從這人中選出人進行訪談,并從這人中隨機選出兩名幸運者給予獎勵.求其中一名幸運者的年齡在歲~歲之間,另一名幸運者的年齡在歲~歲之間的概率;(注:從人中隨機選出人,共有種不同選法)

(2)如果把年齡在 歲~歲之間的人稱為青少年,年齡在歲~歲之間的人稱為中老年,則能否在犯錯誤的概率不超過的前提下認為青少年與中老年人在對財經(jīng)年度人物的了解程度上有差異?

參考數(shù)據(jù):

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體中, ACBC,四邊形ABED是正方形,平面ABED⊥平面ABC,F,G,H分別為BD,EC,BE的中點,求證:

(1) BC⊥平面ACD

(2)平面HGF∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位有車牌尾號為的汽車和尾號為的汽車,兩車分屬于兩個獨立業(yè)務(wù)部分.對一段時間內(nèi)兩輛汽車的用車記錄進行統(tǒng)計,在非限行日, 車日出車頻率, 車日出車頻率.該地區(qū)汽車限行規(guī)定如下:

車尾號

限行日

星期一

星期二

星期三

星期四

星期五

現(xiàn)將汽車日出車頻率理解為日出車概率,且, 兩車出車相互獨立.

I)求該單位在星期一恰好出車一臺的概率.

II)設(shè)表示該單位在星期一與星期二兩天的出車臺數(shù)之和,求的分布列及其數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為

(Ⅰ)寫出曲線C的直角坐標方程;

(Ⅱ)若直線l與曲線C交于A,B兩點,且AB的長度為2,求直線l的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P是橢圓上的動點,、為橢圓的左、右焦點,O為坐標原點,若M的角平分線上的一點,且F1MMP,則|OM|的取值范圍是( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中,,,,為線段的中點,是線段上一動點

(1)時,求證:;

(2)的面積最小時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在極坐標系中,曲線的極坐標方程為,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,直線的參數(shù)方程為(t為參數(shù)).

(1)寫出曲線的參數(shù)方程和直線的普通方程;

(2)已知點是曲線上一點,,求點到直線的最小距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】信息科技的進步和互聯(lián)網(wǎng)商業(yè)模式的興起,全方位地改變了大家金融消費的習慣和金融交易模式,現(xiàn)在銀行的大部分業(yè)務(wù)都可以通過智能終端設(shè)備完成,多家銀行職員人數(shù)在悄然減少.某銀行現(xiàn)有職員320人,平均每人每年可創(chuàng)利20萬元.據(jù)評估,在經(jīng)營條件不變的前提下,每裁員1人,則留崗職員每人每年多創(chuàng)利0.2萬元,但銀行需付下崗職員每人每年6萬元的生活費,并且該銀行正常運轉(zhuǎn)所需人數(shù)不得小于現(xiàn)有職員的,為使裁員后獲得的經(jīng)濟效益最大,該銀行應(yīng)裁員多少人?此時銀行所獲得的最大經(jīng)濟效益是多少萬元?

查看答案和解析>>

同步練習冊答案