【題目】如圖,在四棱錐中,底面為等腰梯形,,其中點在以為直徑的圓上,,,,平面平面.

1)證明:平面.

2)求二面角的正弦值.

【答案】(1)詳見解析;(2).

【解析】

1)連接,,根據(jù)直徑所對圓周角是直角,得到,計算出的長,通過勾股定理證得,再根據(jù)面面垂直的性質定理得到平面.(2)為坐標原點,分別以,的方向為,軸的正方向建立空間直角坐標系通過計算平面和平面的法向量,計算二面角的余弦值,進而求得其正弦值.

1)證明:連接,,因為點在以為直徑的圓上,所以.

因為,所以,.

所以.

因為為等腰梯形,,

所以.

又因為,,

所以,從而得.

又因為平面平面,平面平面

所以平面.

2)解:由(1)易知,,兩兩垂直,以為坐標原點,分別以,,的方向為,軸的正方向建立空間直角坐標系,則,,.

因為,所以,,,.

設平面的法向量為,平面的法向量為,

,得,令,得,

,得,令,得,

所以,所以

故二面角的正弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)約車的興起豐富了民眾出行的選擇,為民眾出行提供便利的同時也解決了很多勞動力的就業(yè)問題,據(jù)某著名網(wǎng)約車公司“滴滴打車”官網(wǎng)顯示,截止目前,該公司已經(jīng)累計解決退伍軍人轉業(yè)為兼職或專職司機三百多萬人次,梁某即為此類網(wǎng)約車司機,據(jù)梁某自己統(tǒng)計某一天出車一次的總路程數(shù)可能的取值是20、22、24、26、28、,它們出現(xiàn)的概率依次是、、、、t、

(1)求這一天中梁某一次行駛路程X的分布列,并求X的均值和方差;

(2)網(wǎng)約車計費細則如下:起步價為5元,行駛路程不超過時,租車費為5元,若行駛路程超過,則按每超出(不足也按計程)收費3元計費.依據(jù)以上條件,計算梁某一天中出車一次收入的均值和方差.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點F1,F2在坐標軸上,離心率為,且過點.

(1)求雙曲線的方程;

(2)若點M(3,m)在雙曲線上,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)處取得極小值

(1)求實數(shù)的值;

(2)設,討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設m,n為平面α外兩條直線,其在平面α內(nèi)的射影分別是兩條直線m1和n1,給出下列4個命題:①m1∥n1m∥n;②m∥nm1與n1平行或重合;③m1⊥n1m⊥n;④m⊥nm1⊥n1.其中所有假命題的序號是_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著我國經(jīng)濟的飛速發(fā)展,人民生活水平得到很大提高,汽車已經(jīng)進入千千萬萬的家庭.大部分的車主在購買汽車時,會在轎車或者中作出選擇,為了研究某地區(qū)哪種車型更受歡迎以及汽車一年內(nèi)的行駛里程,某汽車銷售經(jīng)理作出如下統(tǒng)計:

購買了轎車(輛)

購買了(輛)

歲以下車主

歲以下車主

(I)根據(jù)表,是否有的把握認為年齡與購買的汽車車型有關?

(II)圖給出的是名車主上一年汽車的行駛里程,求這名車主上一年汽車的平均行駛里程(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(III)用表中的頻率估計概率,隨機調查歲以下車主,設其中購買了轎車的人數(shù)為,求的分布列與數(shù)學期望.

附:,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】個不同的紅球和個不同的白球,放入同一個袋中,現(xiàn)從中取出個球.

1)若取出的紅球的個數(shù)不少于白球的個數(shù),則有多少種不同的取法;

2)取出一個紅球記分,取出一個白球記分,若取出個球的總分不少于分,則有多少種不同的取法;

3)若將取出的個球放入一箱子中,記“從箱子中任意取出個球,然后放回箱子中”為一次操作,如果操作三次,求恰有一次取到個紅球并且恰有一次取到個白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】ABC中,A(0,1)AB邊上的高CD所在直線的方程為x2y40,AC邊上的中線BE所在直線的方程為2xy30.

(1)求直線AB的方程;

(2)求直線BC的方程;

(3)BDE的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程

在直接坐標系中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為.

I)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,),判斷點P與直線l的位置關系;

II)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

同步練習冊答案