已知雙曲線x2-
y2
n
=1的離心率不小于
3
,則該雙曲線的焦點(diǎn)到漸近線的最小距離為
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:計(jì)算題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:求出雙曲線的a,b,c,再由離心率公式,求得n的范圍,再由漸近線方程和點(diǎn)到直線的距離公式,即可得到最小值.
解答: 解:雙曲線x2-
y2
n
=1的a=1,b=
n
,c=
1+n

則離心率e=
c
a
=
1+n
3
,則n≥2,
該雙曲線的焦點(diǎn)(
1+n
,0)到漸近線y=
n
x的距離
d=
|
n
1+n
|
1+n
=
n
2
,
當(dāng)且僅當(dāng)n=2取得最小值
2

故答案為:
2
點(diǎn)評:本題考查雙曲線的方程和性質(zhì):離心率和漸近線,考查點(diǎn)到直線的距離公式,考查運(yùn)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin2x+
3
cos2x(x∈R) 
(Ⅰ)求f(x)的單調(diào)增區(qū)間;
(Ⅱ)若f(
α
2
-
π
6
)=
6
5
,α∈(
π
2
,π),求tan(α-
π
4
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某園林公司計(jì)劃在一塊O為圓心,R(R為常數(shù))為半徑的半圓形(如圖)地上種植花草樹木,其中弓形CMDC區(qū)域用于觀賞樣板地,△OCD區(qū)域用于種植花木出售,其余區(qū)域用于種植草皮出售.已知觀賞樣板地的成本是每平方米2元,花木的利潤是每平方米8元,草皮的利潤是每平方米3元.
(1)設(shè)∠COD=θ,
CMD
=l,分別用θ,l表示弓形CMDC的面積S=f(θ),S=g(l);
(2)園林公司應(yīng)該怎樣規(guī)劃這塊土地,才能使總利潤最大?(參考公式:扇形面積公式S=
1
2
R2θ=Rl)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二面角α-l-β的大小為600,m、n為異面直線,且m⊥α,n⊥β,則m、n所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等軸雙曲線C:x2-y2=a2與拋物線y2=16x的準(zhǔn)線交于A、B兩點(diǎn),|AB|=4
3
,則雙曲線C的實(shí)軸長等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓
x2
100
+
y2
64
=1的左、右焦點(diǎn),橢圓內(nèi)一點(diǎn)M的坐標(biāo)為(2,-6),P為橢圓上的一個動點(diǎn),試分別求:
(1)|PM|+
5
3
|PF2|的最小值;
(2)|PM|+|PF2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在平行六面體ABCD-A1B1C1D1中,O是B1D1的中點(diǎn),求證:
B1C
OD
、
OC1
是共面向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-2x-1在區(qū)間[-1,2]上的最大值為
 
,最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個四棱錐的底面為正方形,其三視圖如圖所示,則這個四棱錐的側(cè)面積是( 。
A、2
B、3
2
+
26
C、3
2
+
22
+2
D、3
2
+
22

查看答案和解析>>

同步練習(xí)冊答案