【題目】函數(shù)的部分圖象如圖所示,又函數(shù).

1)求函數(shù)的單調(diào)增區(qū)間;

2)設(shè)的內(nèi)角、的對邊分別為、、,又,且銳角滿足,若,邊的中點,求的周長.

【答案】1;(2

【解析】

1)利用函數(shù)圖象求得、的值,再由函數(shù)的圖象過點求得的值,進而可得出,由此可得出,然后解不等式,即可得出函數(shù)的單調(diào)遞增區(qū)間;;

2)由可求得角的值,利用正弦定理邊角互化思想得出,結(jié)合余弦定理可求得、,進而可判斷出為直角三角形,且角為直角.可計算出的長,進而可求得的周長.

1)由函數(shù)的部分圖象可得

,即,則

又函數(shù)的圖象過點,則,即,

,

,則,

,得

所以函數(shù)的單調(diào)增區(qū)間為;

2)由,得,

因為,所以,所以,得

,由正弦定理得,

由余弦定理,得,即,

①②解得,

,所以,所以為直角三角形,且角為直角.

,所以的周長為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】7個球,其中紅色球2個(同色不加區(qū)分),白色,黃色,藍色,紫色,灰色球各1個,將它們排成一行,要求最左邊不排白色,2個紅色排一起,黃色和紅色不相鄰,則有________種不同的排法(用數(shù)字回答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子中裝有4個大小、形狀、手感完全相同的小球,分別標有數(shù)字1,234.現(xiàn)每次有放回地從中任意取出一個小球,直到標有偶數(shù)的球都取到過就停止.小明用隨機模擬的方法估計恰好在第4次停止摸球的概率,利用計算機軟件產(chǎn)生隨機數(shù),每1組中有4個數(shù)字,分別表示每次摸球的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下21組隨機數(shù):由此可以估計恰好在第4次停止摸球的概率為(

1314 1234 2333 1224 3322 1413 3124 4321 2341 2413 1224 2143 4312

2412 1413 4331 2234 4422 3241 4331 4234

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校高三大理班周三上午四節(jié)、下午三節(jié)有六門科目可供安排,其中語文和數(shù)學(xué)各自都必須上兩節(jié)而且兩節(jié)連上,而英語、物理、化學(xué)、生物最多上一節(jié),則不同的功課安排有________種情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在極坐系中,點繞極點順時針旋轉(zhuǎn)角得到點.為原點,極軸為軸非負半軸,并取相同的單位長度建立平面直角坐標系,曲線逆時針旋轉(zhuǎn)得到曲線.

1)求曲線的直角坐標方程;

2)點的極坐標為,直線過點且與曲線交于兩點,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,將曲線方程,先向左平移2個單位,再向上平移2個單位,得到曲線C.

1)點Mxy)為曲線C上任意一點,寫出曲線C的參數(shù)方程,并求出的最大值;

2)設(shè)直線l的參數(shù)方程為,(t為參數(shù)),又直線l與曲線C的交點為EF,以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段EF的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們稱滿足: )的數(shù)列為“級夢數(shù)列”.

(1)若是“級夢數(shù)列”且.求: 的值;

(2)若是“級夢數(shù)列”且滿足, ,求的最小值;

(3)若是“0級夢數(shù)列”且,設(shè)數(shù)列的前項和為.證明: ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,底面,點中點,點為點關(guān)于直線的對稱點,.

1)求證:平面平面;

2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國政府對PM2.5采用如下標準:

某市環(huán)保局從180天的市區(qū)PM2.5監(jiān)測數(shù)據(jù)中,隨機抽取10天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉).

1)求這10天數(shù)據(jù)的中位數(shù).

2)從這10天的數(shù)據(jù)中任取3天的數(shù)據(jù),記表示空氣質(zhì)量達到一級的天數(shù),求的分布列;

3)以這10天的PM2.5日均值來估計這180天的空氣質(zhì)量情況,記為這180天空氣質(zhì)量達到一級的天數(shù),求的均值.

查看答案和解析>>

同步練習冊答案