若函數(shù)f(x)=-blnx(1,∞)上是減函數(shù),求實數(shù)b的取值范圍.

 

b1

【解析】f(x)=-blnx,f(x)=-(x2)

由題意,f(x)≤0即-0(1,∞)恒成立,b≤,

x∈(1,∞),(1,∞),b1.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第2課時練習卷(解析版) 題型:填空題

函數(shù)f(x)(x1)21x{1,0,1,2,3}的值域是________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第13課時練習卷(解析版) 題型:解答題

要制作一個如圖的框架(單位:m)要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高hAB,tanFEDABxm,BCym.

(1)y關于x的表達式;

(2)如何設計x、y的長度,才能使所用材料最少?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:填空題

設直線ya分別與曲線y2xyex交于點M、N則當線段MN取得最小值時a的值為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:解答題

已知函數(shù)f(x)lnxax(a∈R)

(1)求函數(shù)f(x)的單調區(qū)間;

(2)a>0,求函數(shù)f(x)[1,2]上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第12課時練習卷(解析版) 題型:填空題

函數(shù)yxsinx,x[02π]的值域為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第11課時練習卷(解析版) 題型:填空題

若實數(shù)a、b、c、d滿足1(ac)2(bd)2的最小值為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第二章第10課時練習卷(解析版) 題型:填空題

函數(shù)f(x)2xx32在區(qū)間(0,1)內的零點個數(shù)是________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年高考數(shù)學總復習考點引領+技巧點撥第三章第8課時練習卷(解析版) 題型:解答題

某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發(fā)時,輪船位于港口O北偏西30°且與該港口相距20海里的A,并正以30海里/時的航行速度沿正東方向勻速行駛.假設該小艇沿直線方向以v海里/時的航行速度勻速行駛,經過t小時與輪船相遇.

(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?

(2)假設小艇的最高航行速度只能達到30海里/試設計航行方案(即確定航行方向和航行速度的大小),使得小艇能以最短時間與輪船相遇,并說明理由.

 

查看答案和解析>>

同步練習冊答案