【題目】設(shè)為實(shí)數(shù),.

(1)證明:不論為何實(shí)數(shù),f(x)均為增函數(shù);

(2)試確定的值,使f(-x)+ f(x)=0成立.

【答案】(1)證明見(jiàn)解析(2)1

【解析】

1)任取x1x2,判斷fx1)﹣fx2)的符號(hào),進(jìn)而根據(jù)函數(shù)單調(diào)性的定義,可得結(jié)論;

2)若f(﹣x+fx)=0恒成立,則fx)為奇函數(shù),由奇函數(shù)的性質(zhì)有 f0)=0,代入可求a,則fx)為奇函數(shù),由奇函數(shù)的性質(zhì)有 f0)=0,代入可求a

證明:(1)設(shè)存在任意x1x2,

,,,

fx1)﹣fx2

0,

fx1)<fx2),

∴不論a為何實(shí)數(shù),fx)均為增函數(shù).

解:(2)若f(﹣x+fx)=0,則fx)為奇函數(shù),

f0)=a10,

a1,

當(dāng)a1時(shí),fx)=1滿足f(﹣x+fx)=0恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(Ⅰ)求過(guò)點(diǎn)A2,6)且在兩坐標(biāo)軸上的截距相等的直線m的方程;

(Ⅱ)求過(guò)點(diǎn)A26)且被圓C:(x32+y424截得的弦長(zhǎng)為的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點(diǎn).

1求證:MN⊥CD;

2若∠PDA=45°,求證:MN⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地區(qū)某農(nóng)產(chǎn)品近幾年的產(chǎn)量統(tǒng)計(jì)如表:

年份

2012

2013

2014

2015

2016

2017

年份代碼

1

2

3

4

5

6

年產(chǎn)量(萬(wàn)噸)

6.6

6.7

7

7.1

7.2

7.4

(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;

(2)根據(jù)線性回歸方程預(yù)測(cè)2019年該地區(qū)該農(nóng)產(chǎn)品的年產(chǎn)量.

附:,. 參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為備戰(zhàn)2016年奧運(yùn)會(huì),甲、乙兩位射擊選手進(jìn)行了強(qiáng)化訓(xùn)練.現(xiàn)分別從他們的強(qiáng)化訓(xùn)練期間的若干次平均成績(jī)中隨機(jī)抽取8次,記錄如下:

甲:83,90,79,78,94,89,84,83

乙:92,95,80,75,82,81,90,85

(1)畫(huà)出甲、乙兩位選手成績(jī)的莖葉圖;

(2)現(xiàn)要從中選派一人參加奧運(yùn)會(huì)封閉集訓(xùn),從統(tǒng)計(jì)學(xué)角度,你認(rèn)為派哪位選手參加合理?簡(jiǎn)單說(shuō)明理由;

(3)若將頻率視為概率,對(duì)選手乙在今后的三次比賽成績(jī)進(jìn)行預(yù)測(cè),記這三次成績(jī)中不低于85分的次數(shù)為ξ,求ξ的分布列及均值E(ξ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:實(shí)數(shù)x滿足,命題:實(shí)數(shù)x滿足

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:關(guān)于的不等式的解集為,命題:函數(shù)為增函數(shù),分別求出符合下列條件的實(shí)數(shù)的取值范圍.

(1)為真命題;

(2)“”為真,“”為假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是邊長(zhǎng)為2的正三角形,平面,

(1)求證:平面平面;

(2)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C:

(1)求圓的圓心C的坐標(biāo)和半徑長(zhǎng);

(2)直線l經(jīng)過(guò)坐標(biāo)原點(diǎn)且不與y軸重合,l與圓C相交于兩點(diǎn),求證:為定值;

(3)斜率為1的直線m與圓C相交于D、E兩點(diǎn),求直線m的方程,使的面積最大

查看答案和解析>>

同步練習(xí)冊(cè)答案