【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,直線的方程為,曲線為參數(shù),),在以原點為極點,軸正半軸為極軸的極坐標系中,曲線.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線有公共點,且直線與曲線的交點恰好在曲線軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.

【答案】(1),;(2)

【解析】

(1)消去參數(shù),即可得到曲線的普通方程,根據(jù)極坐標與直角坐標的互化公式,即可化簡得到曲線的直角坐標方程.

(2)根據(jù)直線與曲線有公共點,解得,再聯(lián)立方程組,求得點的坐標,根據(jù)點在曲線內(nèi),列出不等式組,即可求解。

(1)曲線的普通方程為

曲線的直角坐標方程為.

(2)直線與曲線有公共點,則圓心到直線的距離為

,解得.

,得,即,

又點在曲線內(nèi),所以,解得.

綜上,的取值范圍為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)若曲線在點處的切線與直線垂直,求實數(shù)的值;

2)若恒成立,求實數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】浙江省現(xiàn)行的高考招生制度規(guī)定除語、數(shù)、英之外,考生須從政治、歷史、地理、物理、化學(xué)、生物、技術(shù)這7門高中學(xué)考科目中選擇3門作為高考選考科目,成績計入高考總分.已知報考某高校兩個專業(yè)各需要一門科目滿足要求即可,專業(yè):物理、化學(xué)、技術(shù);專業(yè):歷史、地理、技術(shù).考生小李今年打算報考該高校這兩個專業(yè)的選考方式有______ 種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A,B兩點都在以PC為直徑的球O的表面上,AB⊥BC,AB=2,BC=4,若球O的體積為,則三棱錐P-ABC表面積為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=x3+bx2+cx(xR),已知g(x)=f(x)﹣f′(x)是奇函數(shù)

(1)求b、c的值.

(2)求g(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)藥公司研發(fā)一種新的保健產(chǎn)品,從生產(chǎn)的一批產(chǎn)品中抽取200盒作為樣本,測量產(chǎn)品的一項質(zhì)量指標值,該指標值越高越好.由測量結(jié)果得到如下頻率分布直方圖:

(Ⅰ)求,并試估計這200盒產(chǎn)品的該項指標的平均值;

(Ⅱ)國家有關(guān)部門規(guī)定每盒產(chǎn)品該項指標值不低于150均為合格,且按指標值的從低到高依次分為:合格、優(yōu)良、優(yōu)秀三個等級,其中為優(yōu)良,不高于185為合格,不低于215為優(yōu)秀.用樣本的該項質(zhì)量指標值的頻率代替產(chǎn)品的該項質(zhì)量指標值的概率.

①求產(chǎn)品該項指標值的優(yōu)秀率;

②現(xiàn)從這批產(chǎn)品中隨機抽取3盒,求其中至少有1盒該項質(zhì)量指標值為優(yōu)秀的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標系中,已知動直線的參數(shù)方程:,(為參數(shù),) ,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程;

(Ⅱ)若直線與曲線恰好有2個公共點時,求直線的一般方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國改革開放以來經(jīng)濟發(fā)展迅猛,某一線城市的城鎮(zhèn)居民20122018年人均可支配月收入散點圖如下(年份均用末位數(shù)字減1表示).

1)由散點圖可知,人均可支配月收入y(萬元)與年份x之間具有較強的線性相關(guān)關(guān)系,試求y關(guān)于x的回歸方程(系數(shù)精確到0.001),依此相關(guān)關(guān)系預(yù)測2019年該城市人均可支配月收入;

2)在20142018年的五個年份中隨機抽取兩個數(shù)據(jù)作樣本分析,求所取的兩個數(shù)據(jù)中,人均可支配月收入恰好有一個超過1萬元的概率.

注:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為比較甲、乙兩名藍球運動員的近期競技狀態(tài),選取這兩名球員最近五場比賽的得分制成如圖所示的莖葉圖,有下列結(jié)論:

9

8

5

2

8

9

2

1

3

0

1

2

①甲最近五場比賽得分的中位數(shù)高于乙最近五場比賽得分的中位數(shù).

②甲最近五場比賽得分的平均數(shù)低于乙最近五場比賽得分的平均數(shù).

③從最近五場比賽的得分看,乙比甲更穩(wěn)定.

④從最近五場比賽的得分看,甲比乙更穩(wěn)定.

其中所有正確結(jié)論的編號為(

A.①③B.①④C.②③D.②④

查看答案和解析>>

同步練習(xí)冊答案