一圓形紙片的圓心為點(diǎn),點(diǎn)是圓內(nèi)異于點(diǎn)的一定點(diǎn),點(diǎn)是圓周上一點(diǎn).把紙片折疊使點(diǎn)重合,然后展平紙片,折痕與交于點(diǎn).當(dāng)點(diǎn)運(yùn)動(dòng)時(shí)點(diǎn)的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.圓
A
由題意可得,CD是線段AQ的中垂線,
∴|PA|=|PQ|,∴|PQ|+|PO|=|PA|+|PO|=半徑R,即點(diǎn)P到兩個(gè)定點(diǎn)O、Q的距離之和等于定長R (R>|OQ|),由橢圓的定義可得,點(diǎn)P的軌跡為橢圓.
解決本小題的關(guān)鍵是掌握橢圓的定義,知道垂直平分線的性質(zhì)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)是橢圓上一點(diǎn),為橢圓的一個(gè)焦點(diǎn),且軸,焦距,則橢圓的離心率是(     )
A.B.-1C.-1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)頂點(diǎn)是,且離心率為的橢圓的標(biāo)準(zhǔn)方程是________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)橢圓:的兩個(gè)焦點(diǎn)為,點(diǎn)在橢圓上,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過圓的圓心,交橢圓兩點(diǎn),且關(guān)于點(diǎn)對(duì)稱,求直線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

以橢圓的右焦點(diǎn)為圓心作一個(gè)圓,使此圓過橢圓中心并交橢圓于點(diǎn)M,N,
若過橢圓左焦點(diǎn)的直線MF1是圓的切線,則橢圓的離心率為                

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

標(biāo)準(zhǔn)方程下的橢圓的短軸長為,焦點(diǎn),右準(zhǔn)線軸相交于點(diǎn),且,過點(diǎn)的直線和橢圓相交于點(diǎn).
(1)求橢圓的方程和離心率;
(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓為正整數(shù),為常數(shù).曲線在點(diǎn)處的切線方程為.
(Ⅰ)求函數(shù)的最大值;
(Ⅱ)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,一個(gè)頂點(diǎn)為,且其右焦點(diǎn)到直線的距離為3.
(1)求橢圓的方程;
(2)是否存在斜率為 ,且過定點(diǎn)的直線,使與橢圓交于兩個(gè)不同的點(diǎn)、,且?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案