【題目】已知橢圓的左,右焦點(diǎn)分別為,直線(xiàn)與橢圓相交于兩點(diǎn);當(dāng)直線(xiàn)經(jīng)過(guò)橢圓的下頂點(diǎn)和右焦點(diǎn)時(shí),的周長(zhǎng)為,且與橢圓的另一個(gè)交點(diǎn)的橫坐標(biāo)為

1)求橢圓的方程;

2)點(diǎn)內(nèi)一點(diǎn),為坐標(biāo)原點(diǎn),滿(mǎn)足,若點(diǎn)恰好在圓上,求實(shí)數(shù)的取值范圍.

【答案】1;(2

【解析】

1)由橢圓的定義可知,焦點(diǎn)三角形的周長(zhǎng)為,從而求出.寫(xiě)出直線(xiàn)的方程,與橢圓方程聯(lián)立,根據(jù)交點(diǎn)橫坐標(biāo)為,求出,從而寫(xiě)出橢圓的方程;

2)設(shè)出P、Q兩點(diǎn)坐標(biāo),由可知點(diǎn)的重心,根據(jù)重心坐標(biāo)公式可將點(diǎn)P、Q兩點(diǎn)坐標(biāo)來(lái)表示.由點(diǎn)在圓O上,知點(diǎn)M的坐標(biāo)滿(mǎn)足圓O的方程,得.為直線(xiàn)l與橢圓的兩個(gè)交點(diǎn),用韋達(dá)定理表示,將其代入方程,再利用求得的范圍,最終求出實(shí)數(shù)的取值范圍.

解:(1)由題意知.

直線(xiàn)的方程為

∵直線(xiàn)與橢圓的另一個(gè)交點(diǎn)的橫坐標(biāo)為

解得(舍去)

,

∴橢圓的方程為

2)設(shè)

.

∴點(diǎn)的重心,

∵點(diǎn)在圓上,

,

代入方程,得

,

解得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子里裝有個(gè)均勻的紅球和個(gè)均勻的白球,每個(gè)球被取到的概率相等,已知從盒子里一次隨機(jī)取出1個(gè)球,取到的球是紅球的概率為,從盒子里一次隨機(jī)取出2個(gè)球,取到的球至少有1個(gè)是白球的概率為.

1)求,的值;

2)若一次從盒子里隨機(jī)取出3個(gè)球,求取到的白球個(gè)數(shù)不小于紅球個(gè)數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱錐P-ABC中,ACBC,且,AC=BC=2,D,E分別為AB,PB中點(diǎn),PD⊥平面ABCPD=3.

(1)求直線(xiàn)CE與直線(xiàn)PA夾角的余弦值;

(2)求直線(xiàn)PC與平面DEC夾角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市一所醫(yī)院在某時(shí)間段為發(fā)燒超過(guò)38的病人特設(shè)發(fā)熱門(mén)診,該門(mén)診記錄了連續(xù)5天晝夜溫差()與就診人數(shù)的資料:

日期

1

2

3

4

5

晝夜溫差()

8

10

13

12

7

就診人數(shù)(人)

18

25

28

27

17

(1)求的相關(guān)系數(shù),并說(shuō)明晝夜溫差()與就診人數(shù)具有很強(qiáng)的線(xiàn)性相關(guān)關(guān)系.

(2)求就診人數(shù)(人)關(guān)于出晝夜溫差()的線(xiàn)性回歸方程,預(yù)測(cè)晝夜溫差為9時(shí)的就診人數(shù).

附:樣本的相關(guān)系數(shù)為,當(dāng)時(shí)認(rèn)為兩個(gè)變量有很強(qiáng)的線(xiàn)性相關(guān)關(guān)系.

回歸直線(xiàn)方程為,其中,.

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線(xiàn)

1)當(dāng)時(shí),直線(xiàn)被圓截得的弦長(zhǎng)為__________;

2)若在圓上存在一點(diǎn),在直線(xiàn)上存在一點(diǎn),使得的中點(diǎn)恰為坐標(biāo)原點(diǎn),則實(shí)數(shù)的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在斜三棱柱中,是邊長(zhǎng)為2的正三角形,側(cè)面為菱形,且,點(diǎn)OAC中點(diǎn).

1)求證:平面ABC

2)求直線(xiàn)與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:其中正確命題數(shù)是(

A.在線(xiàn)性回歸模型中,相關(guān)系數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量變化的貢獻(xiàn)率,越接近于1,表示回歸效果越好

B.兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1

C.在回歸直線(xiàn)方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位

D.對(duì)分類(lèi)變量,它們的隨機(jī)變量的觀(guān)測(cè)值來(lái)說(shuō),觀(guān)測(cè)值越小,有關(guān)系的把握程度越大

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),在點(diǎn)處的切線(xiàn)方程為,求(1)實(shí)數(shù)的值;(2)函數(shù)的單調(diào)區(qū)間以及在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)的焦點(diǎn)與橢圓的右焦點(diǎn)重合,拋物線(xiàn)的動(dòng)弦過(guò)點(diǎn),過(guò)點(diǎn)且垂直于弦的直線(xiàn)交拋物線(xiàn)的準(zhǔn)線(xiàn)于點(diǎn).

(Ⅰ)求拋物線(xiàn)的標(biāo)準(zhǔn)方程;

(Ⅱ)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案