定義函數(shù),其中表示不小于的最小整數(shù),如,.當(dāng))時(shí),函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044045778366.png" style="vertical-align:middle;" />,記集合中元素的個(gè)數(shù)為,則________________.

試題分析:由題意,,當(dāng)時(shí),,的取值依次為個(gè),即,由此可得,,所以
.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知△ABC中,,求證:.證明:,其中,畫線部分是演繹推理的(   )
A.小前提B.大前提 C.結(jié)論 D.三段論

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)大于或等于2的自然數(shù)m的n次方冪有如下分解方式:
22=1+3      23=3+5
32=1+3+5  33=7+9+11
42=1+3+5+7  43=13+15+17+19
52=1+3+5+7+9  53=21+23+25+27+29
根據(jù)上述分解規(guī)律,若m3(m∈N*)的分解中最小的數(shù)是73,則m的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列各式:_____________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

由“正三角形的內(nèi)切圓切于三邊的中點(diǎn)”可類比猜想:正四面體的內(nèi)切球切于四個(gè)面(  )
A.各正三角形內(nèi)一點(diǎn) B.各正三角形的某高線上的點(diǎn)
C.各正三角形的中心D.各正三角形外的某點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的前項(xiàng)和為,且,,可歸納猜想出的表達(dá)式為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列等式:
+2=4;×2=4;+3=×3=;+4=×4=;…,根據(jù)這些等式反映的結(jié)果,可以得出一個(gè)關(guān)于自然數(shù)n的等式,這個(gè)等式可以表示為______________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

定義平面向量之間的一種運(yùn)算“☉”如下:對(duì)任意的a=(m,n),b=(p,q),令a☉b=mq-np.下面說法錯(cuò)誤的是(  )
A.若a與b共線,則a☉b=0
B.a(chǎn)☉b=b☉a
C.對(duì)任意的λ∈R,有(λa)☉b=λ(a☉b)
D.(a☉b)2+(a·b)2=|a|2|b|2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

請(qǐng)閱讀下列材料:若兩個(gè)正實(shí)數(shù)a1,a2滿足,那么.
證明:構(gòu)造函數(shù),因?yàn)閷?duì)一切實(shí)數(shù)x,恒有,所以 ,從而得,所以.
根據(jù)上述證明方法,若n個(gè)正實(shí)數(shù)滿足時(shí),你能得到的結(jié)論為          .(不必證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案