如圖所示,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E、F分別為DD1、DB的中點(diǎn).
(1)求證:EF平面ABC1D1;
(2)求證:EF⊥B1C;
(3)求三棱錐VB1-EFC的體積.
(1)證明:連接BD1,如圖,在△DD1B中,E、F分別為D1D,DB的中點(diǎn),則
EFD1B
D1B?平面ABC1D1
EF?平面ABC1D1
⇒EF
平面ABC1D1
(2)
B1C⊥AB
B1C⊥BC1
AB,B1C?平面ABC1D1
AB∩BC1=B
B1C⊥平面ABC1D1
BD1?平面ABC1D1
B1C⊥BD1
EFBD1
⇒EF⊥B1C

(3)∵CF⊥平面BDD1B1,∴CF⊥平面EFB1CF=BF=
2

EF=
1
2
BD1=
3
,B1F=
BF2+BB12
=
(
2
)
2
+22
=
6
,
B1E=
B1D12+D1E2
=
12+(2
2
)
2
=3

∴EF2+B1F2=B1E2即∠EFB1=90°,
VB1-EFC=VC-B1EF=
1
3
SB1EF•CF

=
1
3
×
1
2
•EF•B1F•CF
=
1
3
×
1
2
×
3
×
6
×
2
=1
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐P-ABC中,AB⊥BC,AB=BC=
1
2
PA,點(diǎn)O、D分別是AC、PC的中點(diǎn),OP⊥底面ABC.
(Ⅰ)求證OD平面PAB;
(Ⅱ)求直線OD與平面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=
3
,AD=CD=1.
(1)求證:BD⊥AA1
(2)在棱BC上取一點(diǎn)E,使得AE平面DCC1D1,求
BE
EC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知在側(cè)棱垂直于底面三棱柱ABC-A1B1C1中,AC=3,AB=5,cos∠CAB=
3
5
,AA1=4,點(diǎn)D是AB的中點(diǎn).
(1)求證:AC⊥BC1
(2)求證:AC1平面CDB1
(3)求三棱錐A1-B1CD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知四棱錐P-ABCD的底面ABCD是邊長(zhǎng)為2的正方形,PD⊥底面ABCD,E,F(xiàn)分別為棱BC,AD的中點(diǎn).
(Ⅰ)求證:DE平面PFB;
(Ⅱ)已知二面角P-BF-C的余弦值為
6
6
,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD是直角梯形,DCAB,∠BAD=90°,且AB=2AD=2DC=2PD=4(單位:cm),E為PA的中點(diǎn).
(1)證明:DE平面PBC;
(2)證明:DE⊥平面PAB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

長(zhǎng)方體ABCD-A1B1C1D1中AB=1,AA1=AD=2.點(diǎn)E為AB中點(diǎn).
(1)求三棱錐A1-ADE的體積;
(2)求證:A1D⊥平面ABC1D1
(3)求證:BD1平面A1DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,長(zhǎng)方體ABCD-A1B1C1D1中,AB=AD=1,AA1=2,點(diǎn)P為DD1的中點(diǎn).
(1)求證:直線BD1平面PAC;
(2)求證:平面PAC⊥平面BDD1;
(3)求證:直線PB1⊥平面PAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐P-ABCD的底面是AB=2,BC=3的矩形,側(cè)面PAB是等邊三角形,且側(cè)面PAB⊥底面ABCD.
(Ⅰ)求證:面PAD⊥面PAB.
(Ⅱ)求二面角P-CD-A的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案