【題目】已知函數(shù) ,集合M={0,1,2,3,4,5,6,7,8},現(xiàn)從M中任取兩個不同元素m,n,則f(m)f(n)=0的概率為( )
A.
B.
C.
D.
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,0),若函數(shù)f(x)的圖象上存在兩點B、C到點A的距離相等,則稱該函數(shù)f(x)為“點距函數(shù)”,給定下列三個函數(shù):①y=﹣x+2;② ;③y=x+1.其中,“點距函數(shù)”的個數(shù)是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED. (Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)當二面角A﹣PB﹣E的余弦值為多少時,直線PC與平面PAB所成的角為45°?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知x,y滿足: ,若目標函數(shù)z=ax+y取最大值時的最優(yōu)解有無數(shù)多個,則實數(shù)a的值是( )
A.0
B.﹣1
C.±1
D.1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為調查高中生的數(shù)學成績與學生自主學習時間之間的相關關系,某重點高中數(shù)學教師對新入學的45名學生進行了跟蹤調查,其中每周自主做數(shù)學題的時間不少于15小時的有19人,余下的人中,在高三模擬考試中數(shù)學平均成績不足120分的占 ,統(tǒng)計成績后,得到如下的2×2列聯(lián)表:
分數(shù)大于等于120分 | 分數(shù)不足120分 | 合 計 | |
周做題時間不少于15小時 | 4 | 19 | |
周做題時間不足15小時 | |||
合 計 | 45 |
(Ⅰ)請完成上面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認為“高中生的數(shù)學成績與學生自主學習時間有關”;
(Ⅱ)(i) 按照分層抽樣的方法,在上述樣本中,從分數(shù)大于等于120分和分數(shù)不足120分的兩組學生中抽取9名學生,設抽到的不足120分且周做題時間不足15小時的人數(shù)是X,求X的分布列(概率用組合數(shù)算式表示);
(ii) 若將頻率視為概率,從全校大于等于120分的學生中隨機抽取20人,求這些人中周做題時間不少于15小時的人數(shù)的期望和方差.
附:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣2ax,a∈R.
(1)若函數(shù)y=f(x)存在與直線2x﹣y=0平行的切線,求實數(shù)a的取值范圍;
(2)設g(x)=f(x)+ ,若g(x)有極大值點x1 , 求證: >a.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}的前n(n∈N*)項和為Sn , a3=3,且λSn=anan+1 , 在等比數(shù)列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求數(shù)列{an}及{bn}的通項公式;
(Ⅱ)設數(shù)列{cn}的前n(n∈N*)項和為Tn , 且 ,求Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知向量 =(cos ﹣1), =( sin ,cos2 ),函數(shù)f(x)= +1.
(1)若x∈[ ,π],求f(x)的最小值及對應的x的值;
(2)若x∈[0, ],f(x)= ,求sinx的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com