【題目】某研究所開(kāi)發(fā)了一種新藥,測(cè)得成人注射該藥后血藥濃度y(微克/毫升)與給藥時(shí)間x(小時(shí))之間的若干組數(shù)據(jù),并由此得出y與x之間的一個(gè)擬合函數(shù)y=40(0.6x﹣0.62x)(x∈[0,12]),其簡(jiǎn)圖如圖所示.試根據(jù)此擬合函數(shù)解決下列問(wèn)題:
(1)求藥峰濃度與藥峰時(shí)間(精確到0.01小時(shí)),并指出血藥濃度隨時(shí)間的變化趨勢(shì);
(2)求血藥濃度的半衰期(血藥濃度從藥峰濃度降到其一半所需要的時(shí)間)(精確到0.01小時(shí)).
【答案】(1)藥峰濃度為10,藥峰時(shí)間為1.36小時(shí);注射該藥后血藥濃度逐漸增加,到1.36小時(shí)時(shí)達(dá)到峰值,然后血藥濃度逐漸降低;(2)2.36小時(shí).
【解析】
(1)根據(jù)擬合函數(shù)利用換元法可求最值,結(jié)合單調(diào)性可得血藥濃度隨時(shí)間的變化趨勢(shì);
(2)根據(jù)半衰期的含義解方程可求.
(1)由y=40(0.6x﹣0.62x)(x∈[0,12]),
令0.6x=t,t∈[0.612,1],
則y=40(0.6x﹣0.62x)=40(﹣t2+t),
∴當(dāng)t∈[0.612,1],即,x1.36時(shí),
y有最大值為10.
故藥峰濃度為10,藥峰時(shí)間為1.36小時(shí);
由圖象可知,注射該藥后血藥濃度逐漸增加,到1.36小時(shí)時(shí)達(dá)到峰值,然后血藥濃度逐漸降低;
(2)在y=40(0.6x﹣0.62x)中,取y=5,得40(0.6x﹣0.62x)=5,
即﹣8t2+8t﹣1=0,解得t或t(舍),
即0.147,得x3.72.
故血藥濃度的半衰期為3.72﹣1.36=2.36小時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)湖的邊界是圓心為O的圓,湖的一側(cè)有一條直線(xiàn)型公路l,湖上有橋AB(AB是圓O的直徑).規(guī)劃在公路l上選兩個(gè)點(diǎn)P、Q,并修建兩段直線(xiàn)型道路PB、QA.規(guī)劃要求:線(xiàn)段PB、QA上的所有點(diǎn)到點(diǎn)O的距離均不小于圓O的半徑.已知點(diǎn)A、B到直線(xiàn)l的距離分別為AC和BD(C、D為垂足),測(cè)得AB=10,AC=6,BD=12(單位:百米).
(1)若道路PB與橋AB垂直,求道路PB的長(zhǎng);
(2)在規(guī)劃要求下,P和Q中能否有一個(gè)點(diǎn)選在D處?并說(shuō)明理由;
(3)對(duì)規(guī)劃要求下,若道路PB和QA的長(zhǎng)度均為d(單位:百米).求當(dāng)d最小時(shí),P、Q兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊半圓形空地,開(kāi)發(fā)商計(jì)劃建造一個(gè)矩形游泳池及左右兩側(cè)兩個(gè)大小相同的矩形休息區(qū),其中半圓的圓心為,半徑為,矩形的一邊在上,矩形的一邊在上,點(diǎn)在圓周上,在直徑上,且,設(shè).若每平方米游泳池的造價(jià)和休息區(qū)造價(jià)分別為和.
(1)記游泳池及休息區(qū)的總造價(jià)為,求的表達(dá)式;
(2)為進(jìn)行投資預(yù)算,當(dāng)為何值時(shí),總造價(jià)最大?并求出總造價(jià)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(2)若有兩個(gè)極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,側(cè)面為菱形,為的中點(diǎn),為等腰直角三角形,,,且.
(1)證明:平面.
(2)求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠(chǎng)生產(chǎn)的產(chǎn)品中分正品與次品,正品重,次品重,現(xiàn)有5袋產(chǎn)品(每袋裝有10個(gè)產(chǎn)品),已知其中有且只有一袋次品(10個(gè)產(chǎn)品均為次品)如果將5袋產(chǎn)品以1~5編號(hào),第袋取出個(gè)產(chǎn)品(),并將取出的產(chǎn)品一起用秤(可以稱(chēng)出物體重量的工具)稱(chēng)出其重量,若次品所在的袋子的編號(hào)是2,此時(shí)的重量_________;若次品所在的袋子的編號(hào)是,此時(shí)的重量_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如表是我國(guó)2012年至2018年國(guó)內(nèi)生產(chǎn)總值(單位:萬(wàn)億美元)的數(shù)據(jù):
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
國(guó)內(nèi)生產(chǎn)總值 (單位:萬(wàn)億美元) | 8.5 | 9.6 | 10.4 | 11 | 11.1 | 12.1 | 13.6 |
(1)從表中數(shù)據(jù)可知和線(xiàn)性相關(guān)性較強(qiáng),求出以為解釋變量為預(yù)報(bào)變量的線(xiàn)性回歸方程;
(2)已知美國(guó)2018年的國(guó)內(nèi)生產(chǎn)總值約為20.5萬(wàn)億美元,用(1)的結(jié)論,求出我國(guó)最早在那個(gè)年份才能趕上美國(guó)2018年的國(guó)內(nèi)生產(chǎn)總值?
參考數(shù)據(jù):,
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com