函數(shù)f(x)的定義域是R,f(0)=2,對(duì)任意x∈R,f(x)+f′(x)>1,則不等式ex·f(x)>ex+1的解集為(  )
A.{x|x>0}
B.{x|x<0}
C.{x|x<-1或x>1}
D.{x|x<-1或0<x<1}
A
構(gòu)造函數(shù)g(x)=ex·f(x)-ex,
因?yàn)間′(x)=ex·f(x)+ex·f′(x)-ex=ex[f(x)+f′(x)]-ex>ex-ex=0,
所以g(x)=ex·f(x)-ex為R上的增函數(shù).
又因?yàn)間(0)=e0·f(0)-e0=1,
所以原不等式轉(zhuǎn)化為g(x)>g(0),
解得x>0.故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)是函數(shù)的一個(gè)極值點(diǎn).
(1)求的關(guān)系式(用表示),并求的單調(diào)區(qū)間;
(2)設(shè)在區(qū)間[0,4]上是增函數(shù).若存在使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),其中.
(1)求函數(shù)的定義域(用區(qū)間表示);
(2)討論函數(shù)上的單調(diào)性;
(3)若,求上滿(mǎn)足條件的集合(用區(qū)間表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)三次函數(shù)的導(dǎo)函數(shù)為,函數(shù)的圖象的一部分如下圖所示,則(     )
A.極大值為,極小值為
B.極大值為,極小值為
C.極大值為,極小值為
D.極大值為,極小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)f(x)=x2-2ax+a在區(qū)間(-∞,1)上有最小值,則函數(shù)g(x)=在區(qū)間(1,+∞)上一定(  )
A.有最小值B.有最大值C.是減函數(shù)D.是增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線(xiàn)方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù).若實(shí)數(shù)a, b滿(mǎn)足, 則 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=x3-ax2-3x.
(1)若f(x)在[1,+∞)上是增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)在區(qū)間上為單調(diào)增函數(shù),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案