已知橢圓,、是橢圓的左右焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn).
(1)求該橢圓方程;
(2)過(guò)點(diǎn)且傾斜角等于的直線,交橢圓于、兩點(diǎn),求的面積.
(1);(2).
解析試題分析:(1)求橢圓標(biāo)準(zhǔn)方程,就是要求,也即要找到關(guān)于的兩個(gè)條件,本題中有,又有橢圓過(guò)點(diǎn),把點(diǎn)坐標(biāo)代入橢圓方程又得到一個(gè)關(guān)系式,解之即得;(2)本題是直線與橢圓相交問(wèn)題,如果交點(diǎn)坐標(biāo)能簡(jiǎn)單求出,那么我們就求出交點(diǎn)坐標(biāo),然后再解題,但一般情況下,這類(lèi)問(wèn)題中都含有參數(shù),或者交戰(zhàn)坐標(biāo)很復(fù)雜,不易求得,這時(shí)我們采取“設(shè)而不求”的方法,即設(shè)交點(diǎn)為,,在把直線方程代入橢圓(或其他圓錐曲線)方程消去得關(guān)于的二次方程,則有,,則,本題有,由此可求出面積.
(1),則橢圓方程為. 6分
(2)設(shè),,直線. 8分
由, 10
,
. 14分
考點(diǎn):(1)橢圓的標(biāo)準(zhǔn)方程;(2)直線與橢圓相交的綜合問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè),分別是橢圓:的左、右焦點(diǎn),過(guò)點(diǎn)的直線交橢圓于兩點(diǎn),
(1)若的周長(zhǎng)為16,求;
(2)若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓∶的左、右焦點(diǎn)分別、焦距為,且與雙曲線共頂點(diǎn).為橢圓上一點(diǎn),直線交橢圓于另一點(diǎn).
(1)求橢圓的方程;
(2)若點(diǎn)的坐標(biāo)為,求過(guò)、、三點(diǎn)的圓的方程;
(3)若,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C:( )的離心率為,點(diǎn)(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點(diǎn)M(4,),其中,切點(diǎn)分別是A、B,試?yán)媒Y(jié)論:在橢圓上的點(diǎn)()處的橢圓切線方程是,證明直線AB恒過(guò)橢圓的右焦點(diǎn);
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知A、B為拋物線C:y2 = 4x上的兩個(gè)動(dòng)點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過(guò)點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
(1)若直線AB過(guò)拋物線C的焦點(diǎn)F,求證:動(dòng)點(diǎn)P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(2011•湖北)平面內(nèi)與兩定點(diǎn)A1(﹣a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=﹣1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(﹣1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問(wèn):在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,它的一個(gè)焦點(diǎn)恰好與拋物線的焦點(diǎn)重合.
求橢圓的方程;
設(shè)橢圓的上頂點(diǎn)為,過(guò)點(diǎn)作橢圓的兩條動(dòng)弦,若直線斜率之積為,直線是否一定經(jīng)過(guò)一定點(diǎn)?若經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);若不經(jīng)過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
橢圓的離心率,.
(1)求橢圓C的方程;
(2)如圖,是橢圓C的頂點(diǎn),P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),直線DP交軸于點(diǎn)N,直線AD交BP于點(diǎn)M。設(shè)BP的斜率為,MN的斜率為.證明:為定值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓,過(guò)點(diǎn)且離心率為.
求橢圓的方程;
已知是橢圓的左右頂點(diǎn),動(dòng)點(diǎn)滿(mǎn)足,連接角橢圓于點(diǎn),在軸上是否存在異于點(diǎn)的定點(diǎn),使得以為直徑的圓經(jīng)過(guò)直線和直線的交點(diǎn),若存在,求出點(diǎn),若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com