若0<k<a,則雙曲線
x2
a2-k2
-
y2
b2+k2
=1
x2
a2
-
y2
b2
=1
有( 。
A.相同的實軸B.相同的虛軸
C.相同的焦點D.相同的漸近線
對于雙曲線
x2
a2-k2
-
y2
b2+k2
=1
可得c2=a2-k2+b2+k2=a2+b2
對于
x2
a2
-
y2
b2
=1
也有
c21
=a2+b2
∴兩雙曲線的半焦距相同,且焦點都x軸上,
∴二雙曲線由相同的焦點.
故選C.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線上兩點P1、P2的坐標分別為(3,-4
2
),(
9
4
,5),求雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線
x2
a2
-
y2
b2
=1
的右焦點到右準線的距離等于焦距的
1
3
,則離心率為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦點分別F1、F2,O為雙曲線的中心,P是雙曲線右支上異于頂點的任一點,△PF1F2的內(nèi)切圓的圓心為I,且⊙I與x軸相切于點A,過F2作直線PI的垂線,垂足為B,若e為雙曲線的離心率,下面八個命題:
①△PF1F2的內(nèi)切圓的圓心在直線x=b上;
②△PF1F2的內(nèi)切圓的圓心在直線x=a上;
③△PF1F2的內(nèi)切圓的圓心在直線OP上;
④△PF1F2的內(nèi)切圓必通過點(a,0);
⑤|OB|=e|OA|;
⑥|OB|=|OA|;
⑦|OA|=e|OB|;
⑧|OA|與|OB|關系不確定.
其中正確的命題的代號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

F1、F2是雙曲線
x2
4
-
y2
3
=1
的兩個焦點,過點F2作x軸的垂線交雙曲線于A、B兩點,則△F1AB的周長為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知對稱軸為坐標軸的雙曲線的漸近線的漸近線方程為y=±
b
a
x(a>0,b>0),若雙曲線上有一點M(x0,y0),使的a|y0|>b|x0|,則雙曲線的焦點( 。
A.在x軸上
B.在y軸上
C.黨a>b時在x軸上,當a>b時在y軸上
D.不能確定在x軸上還是在y軸上

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線的離心率為2,則雙曲線的兩條漸近線所成的銳角是( 。
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設雙曲線
x2
a2
-
y2
9
=1
(a>0)的漸近線方程為3x±2y=0,則此雙曲線的離心率為(  )
A.
13
2
B.
5
2
C.
3
2
D.
5
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若方程
x2
m
+
y2
m+3
=1
表示焦點在y軸上的雙曲線,則m的取值范圍為______.

查看答案和解析>>

同步練習冊答案