【題目】在四棱錐中,平面,,,,與平面所成的角是,的中點,在線段上,且滿足.

1)求二面角的余弦值;

2)在線段上是否存在點,使得與平面所成角的余弦值是,若存在,求的長;若不存在,請說明理由.

【答案】(1);(2)存在滿足條件的點,理由見解析.

【解析】

1)首先根據(jù)與平面所成的角是得到,以為坐標原點,,分別為,軸建立空間直角坐標系,根據(jù)得到,.

再分別求出平面的法向量和平面的法向量,帶入二面角公式即可.

2)設(shè),,利用向量法求出與平面所成角的正弦值,再解方程即可.

1)因為平面,所以與平面所成的角.

,,所以.

為坐標原點,,分別為,軸建立空間直角坐標系,

,,,設(shè).

,

因為,所以,解得,.

設(shè)平面的法向量為,

,.

所以,令,得到.

設(shè)平面的法向量為,

.

所以,令,得到.

所以.

又由圖可知,該二面角為銳角,故二面角的余弦值為.

(2)

因為,,設(shè),.

所以,.

(1)知平面的法向量為

所以

又因為與平面所成角的余弦值是

所以其正弦值為,即

整理得:(舍去)

所以存在滿足條件的點,,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)已知橢圓)的半焦距為,原點到經(jīng)過兩點的直線的距離為

)求橢圓的離心率;

)如圖,是圓的一條直徑,若橢圓經(jīng)過,兩點,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩點A0,﹣1),B0,1),直線PAPB相交于點P,且它們的斜率之積是,記點P軌跡為C.

1)求曲線C的軌跡方程;

2)直線l與曲線C交于M,N兩點,若|AM||AN|,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率為,直線的兩個交點間的距離為.

)求橢圓的方程;

)分別過滿足,設(shè)的上半部分分別交于兩點,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).

(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;

(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點,且BC=OA,

求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計

70

30

100

根據(jù)表中數(shù)據(jù),問是否有的把握認為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品,現(xiàn)在從這5名學(xué)生中隨機抽取3人,求至多有1人喜歡甜品的概率.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到列聯(lián)表:

喜歡游泳

不喜歡游泳

合計

男生

40

女生

30

合計

100

且已知在100個人中隨機抽取1人,抽到喜歡游泳的學(xué)生的概率為

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認為喜歡游泳與性別有關(guān)?并說明你的理由.

參考公式與臨界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我們知道,地球上的水資源有限,愛護地球、節(jié)約用水是我們每個人的義務(wù)與責任.某市政府為了對自來水的使用進行科學(xué)管理,節(jié)約水資源,計劃確定一個家庭年用水量的標準.為此,對全市家庭日常用水量的情況進行抽樣抽查,獲得了個家庭某年的用水量(單位:立方米),統(tǒng)計結(jié)果如下表及圖所示.

分組

頻數(shù)

頻率

25

0.19

50

0.23

0.18

5

1)分別求出,的值;

2)若以各組區(qū)間中點值代表該組的取值,試估計全市家庭年均用水量;

3)從樣本中年用水量在(單位:立方米)的5個家庭中任選3個,作進一步的跟蹤研究,求年用水量最多的家庭被選中的概率(5個家庭的年用水量都不相等).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)中的每一個數(shù)據(jù)都乘以2,再減去80,得到一組新數(shù)據(jù),若求得新的數(shù)據(jù)的平均數(shù)是1.2,方差是4.4,則原來數(shù)據(jù)的平均數(shù)和方差分別是(

A.40.6,1.1B.48.8,4.4C.81.2,44.4D.78.8,75.6

查看答案和解析>>

同步練習(xí)冊答案