【題目】已知橢圓C=1ab0)的左焦點(diǎn)分別為F1-c,0),F2c,0),過F2作垂直于x軸的直線l交橢圓CA、B兩點(diǎn),滿足|AF2|=c

1)橢圓C的離心率;

2MN是橢圓C短軸的兩個(gè)端點(diǎn),設(shè)點(diǎn)P是橢圓C上一點(diǎn)(異于橢圓C的頂點(diǎn)),直線MP、NP分別和x軸相交于RQ兩點(diǎn),O為坐標(biāo)原點(diǎn),若|OR||OQ|=4,求橢圓C的方程.

【答案】;(

【解析】

試題()法一:把點(diǎn)橫坐標(biāo)代入橢圓求得,從而得到的關(guān)系式,進(jìn)而求得離心率;法二:直角中,由勾股定理得到的關(guān)系式,從而求得離心率;()設(shè),則由、的方程中分別令得到點(diǎn)橫坐標(biāo),從而由求得的值,進(jìn)而求出值,得到橢圓方程.

試題解析:()法一:點(diǎn)橫坐標(biāo)為,代入橢圓得,

解得

,設(shè),,解得

法二:直角中,,

由勾股定理得,即,

,即

)設(shè)

方程為,令得到點(diǎn)橫坐標(biāo)為

方程為,令得到點(diǎn)橫坐標(biāo)為;

,∴橢圓的方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過一年的教學(xué)實(shí)驗(yàn),將甲乙兩個(gè)班學(xué)生一年來的數(shù)學(xué)成績?nèi)∑骄鶖?shù),兩個(gè)班學(xué)生的平均成績均在,按照區(qū)間,進(jìn)行分組,繪制成如下頻率分布直方圖,規(guī)定不低于80(百分制)為優(yōu)秀.

1)完成表格,并判斷是否有90%以上的把握認(rèn)為數(shù)學(xué)成績優(yōu)秀與教學(xué)改革有關(guān);

甲班

乙班

總計(jì)

大于等于80分的人數(shù)

小于80分的人數(shù)

總計(jì)

2)從乙班分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取7名學(xué)生座談,從中選三位同學(xué)發(fā)言,記來自發(fā)言的人數(shù)為隨機(jī)變量,求的分布列和期望.:

0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若對(duì)于任意x[1,4],不等式0≤ax2+bx+4a≤4x恒成立,|a|+|a+b+25|的范圍為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 所在平面互相垂直,且, 分別為AC、DCAD的中點(diǎn)

1)求證: 平面BCG;

2)求三棱錐D-BCG的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在小正方形邊長為1的網(wǎng)格中畫出了某多面體的三視圖,則該多面體的外接球表面積為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競爭從資源的爭奪轉(zhuǎn)向人才的競爭.吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù).在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如圖所示.

1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收人薪資高于8000元的城市的概率;

2)若從月平均收入薪資與月平均期望薪資之差高于1000元的城市中隨機(jī)選擇2座城市,求這2座城市的月平均期望薪資都高于8000元或都低于8000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的四個(gè)頂點(diǎn)組成的四邊形的面積為,且經(jīng)過點(diǎn)

1求橢圓的方程;

2若橢圓的下頂點(diǎn)為,如圖所示,點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn),過橢圓的右焦點(diǎn)的直線垂直于,且與交于兩點(diǎn),與交于點(diǎn),四邊形的面積分別為的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面中,已知點(diǎn),,,…,,其中是正整數(shù),對(duì)平面上任一點(diǎn),記關(guān)于點(diǎn)的對(duì)稱點(diǎn),關(guān)于點(diǎn)的對(duì)稱點(diǎn),…,關(guān)于點(diǎn)的對(duì)稱點(diǎn).

1)求向量的坐標(biāo);

2)當(dāng)點(diǎn)在曲線上移動(dòng)時(shí),點(diǎn)的軌跡是函數(shù)的圖像,其中是以3為周期的周期函數(shù),且當(dāng)時(shí),.求以曲線為圖像的函數(shù)在上的解析式;

3)對(duì)任意偶數(shù),用表示向量的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,設(shè)直線軸的交點(diǎn)為,過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),為線段的中點(diǎn).

(1)若直線的傾斜角為,求的值;

(2)設(shè)直線交直線于點(diǎn),證明:直線.

查看答案和解析>>

同步練習(xí)冊(cè)答案