【題目】某上市股票在30天內(nèi)每股的交易價(jià)格(元)與時(shí)間(天)組成有序數(shù)對(duì),點(diǎn)落在圖中的兩條線(xiàn)段上.
該股票在30天內(nèi)的日交易量(萬(wàn)股)與時(shí)間(天)的部分?jǐn)?shù)據(jù)如下表所示:
第天 | 4 | 10 | 16 | 22 |
(萬(wàn)股) | 36 | 30 | 24 | 18 |
(1)根據(jù)提供的圖象,寫(xiě)出該股票每股交易價(jià)格(元)與時(shí)間(天)所滿(mǎn)足的函數(shù)關(guān)系式;
(2)根據(jù)表中數(shù)據(jù),寫(xiě)出日交易量(萬(wàn)股)與時(shí)間(天)的一次函數(shù)關(guān)系式;
(3)用(萬(wàn)元)表示該股票日交易額,寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并求在這30天內(nèi)第幾天日交易額最大,最大值為多少?
【答案】見(jiàn)解析
【解析】(1)當(dāng)時(shí),設(shè),
由圖象可知,此函數(shù)的圖象過(guò)點(diǎn)和,故,解得,
.(2分)
同理,可求得當(dāng)時(shí),.
.(4分)
(2)設(shè),把所給表中任意兩組數(shù)據(jù)代入可求得,
,,.(7分)
(3)因?yàn)槿战灰最~(萬(wàn)元)=日交易量(萬(wàn)股)每股交易價(jià)格(元),
.(9分)
當(dāng),時(shí),當(dāng)時(shí),萬(wàn)元;
當(dāng),時(shí),,
故在30天中的第15天日交易額最大,為125萬(wàn)元.(12分)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線(xiàn): ,以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知直線(xiàn): .
(1)將曲線(xiàn)上的所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的、2倍后得到曲線(xiàn),求的參數(shù)方程;
(2)在曲線(xiàn)上求一點(diǎn),使點(diǎn)到直線(xiàn)的距離最大,并求出此最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合A={x|(x-3)(x+a)<0,a∈R},集合B={x∈Z|x2-3x-4<0}.
(1)若A∩B的子集個(gè)數(shù)為4,求a的范圍;
(2)若a∈Z,當(dāng)A∩B≠時(shí),求a的最小值,并求當(dāng)a取最小值時(shí)A∪B.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的長(zhǎng)半軸長(zhǎng)為半徑的圓與直線(xiàn)相切.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知點(diǎn),為動(dòng)直線(xiàn)與橢圓的兩個(gè)交點(diǎn),問(wèn):在軸上是否存在定點(diǎn),使得為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, 。
(1)寫(xiě)出的解析式與定義域;
(2)畫(huà)出函數(shù)的圖像;
(3)試討論方程的根的個(gè)數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史收益率(收益率利潤(rùn)保費(fèi)收入)的頻率分布直方圖如圖所示:
(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;
(2)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加元,對(duì)應(yīng)的銷(xiāo)量為(萬(wàn)份).從歷史銷(xiāo)售記錄中抽樣得到如下5組與的對(duì)應(yīng)數(shù)據(jù):
元 | 25 | 30 | 38 | 45 | 52 |
銷(xiāo)量為(萬(wàn)份) | 7.5 | 7.1 | 6.0 | 5.6 | 4.8 |
由上表,知與有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為.
(。┣髤(shù)的值;
(ⅱ)若把回歸方程當(dāng)作與的線(xiàn)性關(guān)系,用(1)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問(wèn)每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤(rùn),并求出最大利潤(rùn).注:保險(xiǎn)產(chǎn)品的保費(fèi)收入每份保單的保費(fèi)銷(xiāo)量.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng),下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理,,得到下表2:
時(shí)間代號(hào) | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
(Ⅰ)求關(guān)于的線(xiàn)性回歸方程;
(Ⅱ)通過(guò)(Ⅰ)中的方程,求出關(guān)于的回歸方程;
(Ⅲ)用所求回歸方程預(yù)測(cè)到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線(xiàn)性回歸方程)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若曲線(xiàn)在和處的切線(xiàn)互相平行,求的值;
(2)求的單調(diào)區(qū)間;
(3)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com