精英家教網(wǎng)如圖,在正四棱臺(tái)內(nèi),以小底為底面.大底面中心為頂點(diǎn)作一內(nèi)接棱錐.已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.
分析:這是棱臺(tái)與棱錐的組合體問題,也是立體幾何常見的問題,這類問題的圖形往往比較復(fù)雜,要認(rèn)真分析各有關(guān)量的位置和大小關(guān)系,因?yàn)樗鼈兊母髁恐g的關(guān)系較密切,所以常引入方程、函數(shù)的知識(shí)去解.
解答:解:如圖,過高OO1和AD的中點(diǎn)E作棱錐和棱臺(tái)的截面,得棱臺(tái)的斜高EE1和棱錐的斜高為EO1,設(shè)OO1=h,∴S錐側(cè)=
1
2
•4b•EO1=2bEO1

S臺(tái)側(cè)=
1
2
(4a+4b)•EE1=2(a+b)•EE1, ∴2bEO1=2(a+b) EE1      ①

∵OO1E1E是直角梯形,其中OE=
b
2
,O1E1=
a
2

∴根據(jù)勾股定理得,EE12=h2+(
a
2
-
b
2
)
2
,EO12=h2+(
b
2
)
2
   ②

①式兩邊平方,把②代入得:b2(h2+
b2
4
)=(a+b)2[h2+(
a
2
-
b
2
)
2
]

解得h2=
a2(2b2-a2)
4a(a+2b)
,即h=
1
2
a(2b2-a2)
a+2b

顯然,由于a>0,b>0,所以此題當(dāng)且僅當(dāng)a<
2
b
時(shí)才有解.
點(diǎn)評(píng):本題考查了在棱臺(tái)的問題中:如果與棱臺(tái)的斜高有關(guān),則常應(yīng)用通過高和斜高的截面,如果和棱臺(tái)的側(cè)棱有關(guān),則需要應(yīng)用通過側(cè)棱和高的截面,要熟悉這些截面中直角梯形的各元素,進(jìn)而將這些元素歸結(jié)為直角三角形的各元素間的運(yùn)算,這是解棱臺(tái)計(jì)算問題的基本技能之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正四棱臺(tái)內(nèi),以小底為底面。大底面中心為頂點(diǎn)作一內(nèi)接棱錐. 已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在正四棱臺(tái)內(nèi),以小底為底面.大底面中心為頂點(diǎn)作一內(nèi)接棱錐.已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正四棱臺(tái)內(nèi),以小底為底面.大底面中心為頂點(diǎn)作一內(nèi)接棱錐.已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

 
(14分)如圖,在正四棱臺(tái)內(nèi),以小底為底面。大底面中心為頂點(diǎn)作一內(nèi)接棱錐. 已知棱臺(tái)小底面邊長(zhǎng)為b,大底面邊長(zhǎng)為a,并且棱臺(tái)的側(cè)面積與內(nèi)接棱錐的側(cè)面面積相等,求這個(gè)棱錐的高,并指出有解的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案