設(shè)集合P={1,2,3,4,5},對(duì)任意kP和正整數(shù)m,記f(mk)=,其中[a]表示不大于a的最大整數(shù)。求證:對(duì)任意正整數(shù)n,存在kP和正整數(shù)m,使得f(m,k)=n。

證明略


解析:

證明:定義集合A={|mN*,kP},其中N*為正整數(shù)集。由于對(duì)任意kiPk≠i,是無理數(shù),則對(duì)任意的k1k2P和正整數(shù)m1、m2,當(dāng)且僅當(dāng)m1=m2,k1=k2。由于A是一個(gè)無窮集,現(xiàn)將A中的元素按從小到大的順序排成一個(gè)無窮數(shù)列。對(duì)于任意的正整數(shù)n,設(shè)此數(shù)列中第n項(xiàng)為。下面確定nm、k的關(guān)系。若,則。由m1是正整數(shù)可知,對(duì)i=1,2,3,4,5,滿足這個(gè)條件的m1的個(gè)數(shù)為。從而n==f(m,k)。因此對(duì)任意nN*,存在mN*,kP,使得f(m,k)=n

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)設(shè)全集U={1,2,3,4,5,6},設(shè)集合P={1,2,3,4},Q={3,4,5},則P∩(?UQ)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)f(x)=ax2-4bx+1
(Ⅰ)設(shè)集合P={1,2,3},集合Q={-1,1,2,3,4},從集合P中隨機(jī)取一個(gè)數(shù)作為a,從集合Q中隨機(jī)取一個(gè)數(shù)作為b,求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(Ⅱ)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),求函數(shù)f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-4bx+1.
(1)設(shè)集合P={1,2,3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b,求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率;
(2)設(shè)點(diǎn)(a,b)是區(qū)域
x+y-8≤0
x>0
y>0
內(nèi)的隨機(jī)點(diǎn),記A={y=f(x)有兩個(gè)零點(diǎn),其中一個(gè)大于1,另一個(gè)小于1},求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={1,2,3,4,5,6,7,8},P的子集A={a1,a2,a3},其中a3>a2>a1,當(dāng)滿足a3≥a2+2≥a1+5時(shí),我們稱子集A為P的“好子集”,則這種“好子集”的個(gè)數(shù)為
10
10
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的一元二次函數(shù)f(x)=ax2-bx+1,設(shè)集合P={1,2,3},Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為a和b.
(1)求函數(shù)y=f(x)有零點(diǎn)的概率;
(2)求函數(shù)y=f(x)在區(qū)間[1,+∞)上是增函數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案