橢圓C1的焦點(diǎn)在x軸上,中心是坐標(biāo)原點(diǎn)O,且與橢圓的離心率相同,長(zhǎng)軸長(zhǎng)是C2長(zhǎng)軸長(zhǎng)的一半.A(3,1)為C2上一點(diǎn),OA交C1于P點(diǎn),P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為Q點(diǎn),過(guò)A作C2的兩條互相垂直的動(dòng)弦AB,AC,分別交C2于B,C兩點(diǎn),如圖.

(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)求Q點(diǎn)坐標(biāo);
(3)求證:B,Q,C三點(diǎn)共線.
【答案】分析:(1)由橢圓可知:長(zhǎng)軸長(zhǎng)為,離心率是,進(jìn)而得到橢圓C1的a,b,c.
(2)由點(diǎn)A(3,1)可得直線OA:.與橢圓方程聯(lián)立即可得出點(diǎn)P的坐標(biāo),再根據(jù)對(duì)稱(chēng)性即可得出點(diǎn)Q的坐標(biāo);
(3)分AC⊥x軸時(shí),與直線AC的斜率垂直時(shí)兩種情況討論.只要證明kBQ=kQC即可.
解答:解:(1)由橢圓可知:長(zhǎng)軸長(zhǎng)為,離心率是,
∴橢圓C1,,b2=a2-c2=1,
∴橢圓C1的標(biāo)準(zhǔn)方程為
(2)∵A(3,1)可得直線OA:
聯(lián)立解得第一象限P,可得Q
(3)當(dāng)AB∥x軸時(shí),AC⊥x軸,可得B(-3,1),C(3,-1).
,,
,∴B,Q,C三點(diǎn)共線.
當(dāng)直線AC存在斜率時(shí),可設(shè)直線AC:y-1=k(x-3),化為y=kx+1-3k,
聯(lián)立,消去y得到(3k2+1)x2+6k(1-3k)x+9(3k2-2k-1)=0,
得xC=,yC=kxC+1-3k=
=
同理,以代替上式中的k,得kBQ==,
∴kCQ=kBQ,即Q,B,C三點(diǎn)共線,
綜上可知:Q,B,C三點(diǎn)共線.
點(diǎn)評(píng):本題綜合考查了橢圓的標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立得到交點(diǎn)坐標(biāo)、對(duì)稱(chēng)問(wèn)題、三點(diǎn)共線問(wèn)題等基礎(chǔ)知識(shí)與基本技能,考查了分類(lèi)討論的思想方法、推理能力和計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓C1的焦點(diǎn)在x軸上,中心是坐標(biāo)原點(diǎn)O,且與橢圓C2
x2
12
+
y2
4
=1
的離心率相同,長(zhǎng)軸長(zhǎng)是C2長(zhǎng)軸長(zhǎng)的一半.A(3,1)為C2上一點(diǎn),OA交C1于P點(diǎn),P關(guān)于x軸的對(duì)稱(chēng)點(diǎn)為Q點(diǎn),過(guò)A作C2的兩條互相垂直的動(dòng)弦AB,AC,分別交C2于B,C兩點(diǎn),如圖.

(1)求橢圓C1的標(biāo)準(zhǔn)方程;
(2)求Q點(diǎn)坐標(biāo);
(3)求證:B,Q,C三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第五次月考文科數(shù)學(xué) 題型:解答題

如圖,橢圓C的焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1A,上頂點(diǎn)為B.拋物線C1、C2分別以AB為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)OC1C2相交于直線上一點(diǎn)P

(1)求橢圓C及拋物線C1、C2的方程;

(2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),求的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年北京市高三下學(xué)期開(kāi)學(xué)檢測(cè)文科數(shù)學(xué)試卷 題型:解答題

(本小題滿分14分)如圖,橢圓的焦點(diǎn)在x軸上,左右頂點(diǎn)分別為A1,A,上頂點(diǎn)B,拋物線C1,C2分別以A1,B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O,C1與C2相交于直線上一點(diǎn)P.

(1)求橢圓C及拋物線C1,C2的方程;

(2)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M,N,已知點(diǎn),求的最小值.

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省武漢市部分重點(diǎn)中學(xué)高三(上)起點(diǎn)考試數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,橢圓C:焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線上一點(diǎn)P.
(Ⅰ)求橢圓C及拋物線C1、C2的方程;
(Ⅱ)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn),0),求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案