【題目】某地區(qū)某農(nóng)產(chǎn)品近五年的產(chǎn)量統(tǒng)計如下表:
(Ⅰ)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程,并由所建立的回歸方程預測該地區(qū)2018年該農(nóng)產(chǎn)品的產(chǎn)量;
(Ⅱ)若近五年該農(nóng)產(chǎn)品每千克的價格(單位:元)與年產(chǎn)量(單位:萬噸)滿足的函數(shù)關(guān)系式為,且每年該農(nóng)產(chǎn)品都能售完.求年銷售額最大時相應的年份代碼的值,
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的計算公式:,.
科目:高中數(shù)學 來源: 題型:
【題目】業(yè)界稱“中國芯”迎來發(fā)展和投資元年,某芯片企業(yè)準備研發(fā)一款產(chǎn)品,研發(fā)啟動時投入資金為(為常數(shù))元,之后每年會投入一筆研發(fā)資金,年后總投入資金記為,經(jīng)計算發(fā)現(xiàn)當時,近似地滿足,其中為常數(shù),.已知年后總投入資金為研發(fā)啟動時投入資金的倍.問
(1)研發(fā)啟動多少年后,總投入資金是研發(fā)啟動時投入資金的倍;
(2)研發(fā)啟動后第幾年的投入資金的最多.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)f(x)的定義域為R,并且圖象關(guān)于y軸對稱,當x≤-1時,y=f(x)的圖象是經(jīng)過點(-2,0)與(-1,1)的射線,又在y=f(x)的圖象中有一部分是頂點在(0,2),且經(jīng)過點(1,1)的一段拋物線.
(1)試求出函數(shù)f(x)的表達式,作出其圖象;
(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 過點,且兩個焦點的坐標分別為, .
(1)求的方程;
(2)若, , 為上的三個不同的點, 為坐標原點,且,求證:四邊形的面積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在中,,D,E分別為的中點,點F為線段上的一點,將沿折起到的位置,使,如圖2.
(1)求二面角
(2)線段上是否存在點,使平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題中,真命題的個數(shù)是 ( )
①命題:“已知 ,“”是“”的充分不必要條件”;
②命題:“p且q為真”是“p或q為真”的必要不充分條件;
③命題:已知冪函數(shù)的圖象經(jīng)過點(2,),則f(4)的值等于;
④命題:若,則.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)和,
(Ⅰ)設(shè),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當時,為函數(shù)圖象與函數(shù)圖象的公共點,且在點處有公共切線,求點的坐標及實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國南北朝時間著名數(shù)學家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構(gòu)造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,運用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓 繞 軸旋轉(zhuǎn)一周后得一橄欖狀的幾何體,類比上述方法,運用祖暅原理可求得其體積等于( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,若對任意給定的,關(guān)于的方程在區(qū)間上總存在唯一的一個解,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com