選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)xoy中,曲線C的參數(shù)方程為(t為參數(shù)),若圓P在以該直角坐標(biāo)系的原點O為極點、x軸的正半軸為極軸的極坐標(biāo)系下的方程為ρ2-4ρcos+3=0
(Ⅰ)求曲線C的普通方程和圓P的直角坐標(biāo)方程;
(Ⅱ)設(shè)點A是曲線C上的動點,點B是圓P上的動點,求|AB|的最小值.
【答案】分析:(Ⅰ)由參數(shù)方程直接求出曲線C的普通方程和利用極坐標(biāo)方程直接轉(zhuǎn)化為圓P的直角坐標(biāo)方程;
(Ⅱ)設(shè)點A是曲線C上的動點,點B是圓P上的動點,求|AB|的最小值可轉(zhuǎn)化為求|PA|的最小值.
求|AB|的最小值.
解答:
解:(Ⅰ)曲線C,消去參數(shù)t后,解得它的直角坐標(biāo)方程為2x-y-1=0(x≥1),
因為ρ2=x2+y2,ρcosθ=x,所以ρ2-4ρcosθ+3=0的直角坐標(biāo)方程為(x-2)2+y2=1.…(4分)
(Ⅱ)過圓心P作射線2x-y-1=0(x≥1)的垂線,垂足E在該射線的反向延長線上,
當(dāng)點A在射線的端點時,|PA|==,
此時|EA|的長最小,故此時|PA|取最小值.
所以所求的最短距離為.…(7分)
點評:本題主要考查直線和圓的參數(shù)方程及極坐標(biāo)方程等基礎(chǔ)知識,考查運算求解能力及化歸與轉(zhuǎn)化思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

[選修4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xoy中,直線l的參數(shù)方程為
x=
1
2
t
y=
2
2
+
3
2
t
(t為參數(shù)),若以直角坐標(biāo)系xoy 的O點為極點,Ox為極軸,且長度單位相同,建立極坐標(biāo)系,得曲線C的極坐標(biāo)方程為ρ=2cos(θ-
π
4
).直線l與曲線C交于A,B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A.選修4-1:幾何證明選講
如圖,△ABC的外接圓的切線AE與BC的延長線相交于點E,∠BAC的平分線與BC
交于點D.求證:ED2=EB•EC.
B.選修4-2:矩陣與變換
求矩陣M=
-14
26
的特征值和特征向量.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在以O(shè)為極點的極坐標(biāo)系中,直線l與曲線C的極坐標(biāo)方程分別是ρcos(θ+
π
4
)=
3
2
2
和ρsin2θ=4cosθ,直線l與曲線C交于點.A,B,C,求線段AB的長.
D.選修4-5:不等式選講
對于實數(shù)x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•遼寧)選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xoy中以O(shè)為極點,x軸正半軸為極軸建立坐標(biāo)系.圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-
π
4
)=2
2

(Ⅰ)求C1與C2交點的極坐標(biāo);
(Ⅱ)設(shè)P為C1的圓心,Q為C1與C2交點連線的中點,已知直線PQ的參數(shù)方程為
x=t3+a
y=
b
2
t3+1
(t∈R為參數(shù)),求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:
坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系x0y中,曲線C1為x=acosφ,y=sinφ(1<a<6,φ為參數(shù)).
在以0為原點,x軸正半軸為極軸的極坐標(biāo)中,曲線C2的方程為ρ=6cosθ,射線ι為θ=α,ι與C1的交點為A,ι與C2除極點外的一個交點為B.當(dāng)α=0時,|AB|=4.
(1)求C1,C2的直角坐標(biāo)方程;
(2)若過點P(1,0)且斜率為
3
的直線m與曲線C1交于D、E兩點,求|PD|與|PE|差的絕對值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•晉中三模)選修4-4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系xoy中,曲線c1的參數(shù)方程為:
x=2cosθ
y=2sinθ
(θ為參數(shù)),把曲線c1上所有點的縱坐標(biāo)壓縮為原來的一半得到曲線c2,以O(shè)為極點,x正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
2
ρcos(θ-
π
4
)=4

(1)求曲線c2的普通方程,并指明曲線類型;
(2)過(1,0)點與l垂直的直線l1與曲線c2相交與A、B兩點,求弦AB的長.

查看答案和解析>>

同步練習(xí)冊答案