【題目】在平面直角坐標(biāo)系中,動點(diǎn)到兩點(diǎn)的距離之和等于4,設(shè)點(diǎn)的軌跡為曲線,直線過點(diǎn)且與曲線交于兩點(diǎn).

求曲線的方程;

的面積是否存在最大值,若存在,求出的面積的最大值;若不存在,說明理由.

【答案】(1)(2)的最大值為

【解析】試題分析:)利用橢圓的定義進(jìn)行求解;()設(shè)出直線方程,聯(lián)立直線和橢圓的方程,得到關(guān)于的一元二次方程,利用根與系數(shù)的關(guān)系、三角形的面積公式得到表達(dá)式,再利用換元思想和函數(shù)的單調(diào)性進(jìn)行求解.

試題解析:1)由橢圓定義知,點(diǎn)的軌跡是以為焦點(diǎn),長半軸長為2的橢圓.故曲線的方程為.

2)存在面積的最大值

因?yàn)橹本過,可設(shè)直線的方程為.

整理得

設(shè)

解得

設(shè)

在區(qū)間上為增函數(shù)

所以

所以當(dāng)且僅當(dāng)時取等號

所以的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線AB被圓O:x2+y2=1截得的弦長為
(1)求橢圓C的方程;
(2)設(shè)過點(diǎn)B且斜率為k的動直線l與橢圓C的另一個交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,為坐標(biāo)原點(diǎn),已知向量,又點(diǎn),,,.

(1)若,且,求向量;

(2)若向量與向量共線,常數(shù),求的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)兩點(diǎn)A(4,0),B(0,2)

(1)求過P(2,3)點(diǎn)且與直線AB平行的直線l的方程;

(2)設(shè)O(0,0),求OAB外接圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的幾何體是由以等邊三角形ABC為底面的棱柱被平面DEF所截而得,已知FA平面ABC,AB=2,AF=2,BD=1,CE=3,O為BC的中點(diǎn).

(1)求證:面EFD面BCED;

(2)求平面DEF與平面ACEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的兩個焦點(diǎn)分別為 ,過作橢圓長軸的垂線交橢圓于點(diǎn),若為等腰直角三角形,則橢圓的離心率是( )

A. B. C. D.

【答案】C

【解析】試題分析:解:設(shè)點(diǎn)Px軸上方,坐標(biāo)為(),為等腰直角三角形,|PF2|=|F1F2|,故選D.

考點(diǎn):橢圓的簡單性質(zhì)

點(diǎn)評:本題主要考查了橢圓的簡單性質(zhì).橢圓的離心率是高考中選擇填空題?嫉念}目.應(yīng)熟練掌握圓錐曲線中ab,ce的關(guān)系

型】單選題
結(jié)束】
8

【題目】”是“對任意的正數(shù) ”的( )

A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)到點(diǎn), 及到直線的距離都相等,如果這樣的點(diǎn)恰好只有一個,那么實(shí)數(shù)的值是( )

A. B. C. D.

【答案】D

【解析】試題分析:由題意知在拋物線上,設(shè),則有,化簡得,當(dāng)時,符合題意;當(dāng)時,,有,,則,所以選D

考點(diǎn):1、點(diǎn)到直線的距離公式;2、拋物線的性質(zhì).

【方法點(diǎn)睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點(diǎn)和直線的距離相等,則的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點(diǎn)到到焦點(diǎn)的距離、拋物線上的點(diǎn)到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化,如果問題中涉及拋物線的焦點(diǎn)和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線的定義就能解決.

型】單選題
結(jié)束】
13

【題目】在極坐標(biāo)系中,已知兩點(diǎn), ,則 兩點(diǎn)間的距離為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓 和點(diǎn),動圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線

(1)求曲線的方程;

(2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn), 在曲線上,若直線, 的斜率分別是 ,滿足,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日期

121

122

123

124

125

溫差x()

10

11

13

12

8

發(fā)芽數(shù)y()

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;

(2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求y關(guān)于x的線性回歸方程

(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(附:對于一組數(shù)據(jù)(x1y1),(x2,y2),…,(xn,yn),其回歸直線的斜率和截距的最小二乘估計(jì)分別為

查看答案和解析>>

同步練習(xí)冊答案