已知等差數(shù)列{an}的前5項和為105,且a10=2a5.
(1)求數(shù)列{an}的通項公式;
(2)對任意m∈N*,將數(shù)列{an}中不大于72m的項的個數(shù)記為bm,求數(shù)列{bm}的前m項和Sm.

(1) an=7n(n∈N*)    (2)Sm=

解析解:(1)設(shè)數(shù)列{an}的公差為d,前n項和為Tn,
∵T5=105,a10=2a5,

解得a1=7,d=7,
∴an=7+(n-1)·7=7n(n∈N*).
(2)對m∈N*由an=7n≤72m,
得n≤72m-1,
即bm=72m-1=7·49m-1
∴數(shù)列{bm}是首項為7,公比為49的等比數(shù)列,
∴Sm==(49m-1)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列是公差不為0的等差數(shù)列,,且,成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè),求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列{an}的前n項和為Sn,已知a3=5,S3=9.
(1)求首項a1和公差d的值;
(2)若Sn=100,求n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知各項均為正數(shù)的數(shù)列{an}的前n項和滿足Sn>1,且6Sn=(an+1)(an+2),n∈N*.求{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某工業(yè)城市按照“十二五”(2011年至2015年)期間本地區(qū)主要污染物排放總量控制要求,進行減排治污.現(xiàn)以降低SO2的年排放量為例,原計劃“十二五”期間每年的排放量都比上一年減少0.3萬噸,已知該城市2011年SO2的年排放量約為9.3萬噸.
(1)按原計劃,“十二五”期間該城市共排放SO2約多少萬噸?
(2)該城市為響應(yīng)“十八大”提出的建設(shè)“美麗中國”的號召,決定加大減排力度.在2012年剛好按原計劃完成減排任務(wù)的條件下,自2013年起,SO2的年排放量每年比上一年減少的百分率為p,為使2020年這一年SO2的年排放量控制在6萬噸以內(nèi),求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足:a3·a4=117,a2+a5=22.
(1)求數(shù)列{an}的通項公式an.
(2)若數(shù)列{bn}是等差數(shù)列,且bn=,求非零常數(shù)c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知是等差數(shù)列,公差為,首項,前項和為.令,的前項和.數(shù)列滿足.
(1)求數(shù)列的通項公式;
(2)若,,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等差數(shù)列{an}的公差不為零,a1=25,且a1,a11,a13成等比數(shù)列.
(1)求{an}的通項公式;
(2)求a1+a4+a7+…+a3n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列和等比數(shù)列中,,項和.
(1)若,求實數(shù)的值;
(2)是否存在正整數(shù),使得數(shù)列的所有項都在數(shù)列中?若存在,求出所有的,若不存在,說明理由;
(3)是否存在正實數(shù),使得數(shù)列中至少有三項在數(shù)列中,但中的項不都在數(shù)列中?若存在,求出一個可能的的值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案