在如圖所示的幾何體中,面為正方形,面為等腰梯形,,,,.
(1)求證:;
(2)求三棱錐的體積;
(3)線段上是否存在點,使//平面?證明你的結(jié)論.
(1)先證,再證,進而用線面垂直的判定定理即可證明;
(2)
(3)線段上存在點,使得//平面成立
解析試題分析:(1)在△中, 因為,,,
又因為,
平面
(2)解:因為平面,所以.
又因為,平面
在等腰梯形中可得,所以.
△的面積
三棱錐的體積
(3)線段上存在點,且為中點時,有// 平面,證明如下:
連結(jié),與交于點,連接.
因為為正方形,所以為中點
//
又平面
//平面.
線段上存在點,使得//平面成立
考點:本小題主要考查線面垂直、線面平行的判斷和應用以及三棱錐體積的計算,考查學生的空間想象能力和運算求解能力.
點評:線面平行、線面垂直的判定定理和性質(zhì)定理經(jīng)?疾椋`活準確應用.
科目:高中數(shù)學 來源: 題型:解答題
如圖一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2。將△ABD沿邊AB折起, 使得△ABD與△ABC成30o的二面角,如圖二,在二面角中.
(1) 求CD與面ABC所成的角正弦值的大小;
(2) 對于AD上任意點H,CH是否與面ABD垂直。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知AC⊥平面CDE,BD//AC,△ECD為等邊三角形,F(xiàn)為ED邊的中點,CD=BD=2AC=2
(1)求證:CF∥面ABE;
(2)求證:面ABE⊥平面BDE:
(3)求三棱錐F—ABE的體積。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,底面是邊長為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點.
(1)證明:MN∥平面ABCD;
(2) 過點A作AQ⊥PC,垂足為點Q,求二面角A-MN-Q的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,是半圓的直徑,是半圓上除、外的一個動點,平面,,,,.
⑴證明:平面平面;
⑵試探究當在什么位置時三棱錐的體積取得最大值,請說明理由并求出這個最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在四棱柱ABCD-A1B1C1D1中,D1D⊥底面ABCD,底面ABCD是正方形,且AB=1,D1D=.
(1)求直線D1B與平面ABCD所成角的大;
(2)求證:AC⊥平面BB1D1D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com