點(diǎn)P(-1,2)的極坐標(biāo)是(      )

    A.(,)      B.(,

    C.()   D.(,


解析:

易知,點(diǎn)P在第二象限。而,

是第四象限角,B、D中角為第二象限角,但

,,故選D。

點(diǎn)評(píng)  本題點(diǎn)的直角坐標(biāo)()化為極坐標(biāo)(,)困難之處是極角。確定極角的原則是:第一點(diǎn)所在象限與極角所在象限一致,第二

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
2
m(x-1)2-2x+3+lnx(m≥1).
(Ⅰ)當(dāng)m=
3
2
時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;
(Ⅱ)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];
(Ⅲ)是否存在實(shí)數(shù)m,使曲線(xiàn)C:y=f(x)在點(diǎn)P(1,1)處的切線(xiàn)l與曲線(xiàn)C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在極坐標(biāo)系中,點(diǎn)A的極坐標(biāo)是(1,π),點(diǎn)P是曲線(xiàn)C:ρ=2sinθ上的動(dòng)點(diǎn),則|PA|的最大值為
2
+1
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•杭州一模)已知函數(shù)f(x)=x2-(a+2)x+alnx.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的極小值;
(Ⅱ)當(dāng)a=-1時(shí),過(guò)坐標(biāo)原點(diǎn)O作曲線(xiàn)y=f(x)的切線(xiàn),設(shè)切點(diǎn)為P(m,n),求實(shí)數(shù)m的值;
(Ⅲ)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0,y0)處的切線(xiàn)方程為l:y=h(x),當(dāng)x≠x0時(shí),若
g(x)-h(x)x-x0
>0在D內(nèi)恒成立,則稱(chēng)P為函數(shù)y=g(x)的“轉(zhuǎn)點(diǎn)”.當(dāng)a=8時(shí),試問(wèn)函數(shù)y=f(x)是否存在“轉(zhuǎn)點(diǎn)”.若存在,請(qǐng)求出“轉(zhuǎn)點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌縣一模)以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.已知點(diǎn)P的極坐標(biāo)為(
2
,
π
4
),直線(xiàn)l過(guò)點(diǎn)P,且傾斜角為
3
,方程
x2
36
+
y2
16
=1所對(duì)應(yīng)的曲線(xiàn)經(jīng)過(guò)伸縮變換
x′=
1
3
x
y′=
1
2
y
后的圖形為曲線(xiàn)C.
(Ⅰ)求直線(xiàn)l的參數(shù)方程和曲線(xiàn)C的直角坐標(biāo)系方程.
(Ⅱ)直線(xiàn)l與曲線(xiàn)C相交于兩點(diǎn)A,B,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年福建省莆田市高三畢業(yè)班適應(yīng)性練習(xí)理科數(shù)學(xué) 題型:解答題

(本小題滿(mǎn)分14分)

已知函數(shù)f(x)=m(x-1)2-2x+3+lnx(m≥1).

(Ⅰ)當(dāng)時(shí),求函數(shù)f(x)在區(qū)間[1,3]上的極小值;

(Ⅱ)求證:函數(shù)f(x)存在單調(diào)遞減區(qū)間[a,b];

(Ⅲ)是否存在實(shí)數(shù)m,使曲線(xiàn)C:y=f(x)在點(diǎn)P(1,1)處的切線(xiàn)l與曲線(xiàn)C有且只有一個(gè)公共點(diǎn)?若存在,求出實(shí)數(shù)m的值,若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案