【題目】閱讀如圖的程序框圖,運(yùn)行相應(yīng)的程序,輸出的結(jié)果為(
A.3
B.
C.
D.﹣

【答案】D
【解析】解:模擬程序的運(yùn)行,可得 i=0,A=3,
執(zhí)行循環(huán)體,i=1,A= ,
不滿(mǎn)足條件i>2017,執(zhí)行循環(huán)體,i=2,A=﹣
不滿(mǎn)足條件i>2017,執(zhí)行循環(huán)體,i=3,A=3
不滿(mǎn)足條件i>2017,執(zhí)行循環(huán)體,i=4,A=

觀察規(guī)律可得A的取值周期為3,由于2017=666×3+1,可得:
不滿(mǎn)足條件i>2017,執(zhí)行循環(huán)體,i=2017,A=
不滿(mǎn)足條件i>2017,執(zhí)行循環(huán)體,i=2018,A=﹣
滿(mǎn)足條件i>2017,退出循環(huán),輸出A的值為﹣
故選:D.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱(chēng)流程圖,是一種用規(guī)定的圖形、指向線(xiàn)及文字說(shuō)明來(lái)準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線(xiàn);程序框外必要文字說(shuō)明才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x+2|﹣|x﹣2|+m(m∈R).
(Ⅰ)若m=1,求不等式f(x)≥0的解集;
(Ⅱ)若方程f(x)=x有三個(gè)實(shí)根,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD為菱形,四邊形ACEF為平行四邊形,設(shè)BD與AC相交于點(diǎn)G,AB=BD=2,AE= ,∠EAD=∠EAB.
(1)證明:平面ACEF⊥平面ABCD;
(2)若AE與平面ABCD所成角為60°,求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函f(x)=sin(2x﹣ )﹣cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期、最大值及取得最大值時(shí)x的集合;
(Ⅱ)設(shè)△ABC內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若 ,b=1, ,且a>b,求角B和角C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點(diǎn)D為BC的中點(diǎn);
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點(diǎn)E為A1C上的點(diǎn),且滿(mǎn)足 =m (m∈R),若二面角E﹣AD﹣C的余弦值為 ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司有A,B,C,D,E五輛汽車(chē),其中A、B兩輛汽車(chē)的車(chē)牌尾號(hào)均為1,C、D兩輛汽車(chē)的車(chē)牌尾號(hào)均為2,E車(chē)的車(chē)牌尾號(hào)為6,已知在非限行日,每輛車(chē)可能出車(chē)或不出車(chē),A、B、E三輛汽車(chē)每天出車(chē)的概率均為 ,C、D兩輛汽車(chē)每天出車(chē)的概率均為 ,且五輛汽車(chē)是否出車(chē)相互獨(dú)立,該公司所在地區(qū)汽車(chē)限行規(guī)定如下:

車(chē)牌尾號(hào)

0和5

1和6

2和7

3和8

4和9

限行日

星期一

星期二

星期三

星期四

星期五


(1)求該公司在星期一至少有2輛汽車(chē)出車(chē)的概率;
(2)設(shè)X表示該公司在星期二和星期三兩天出車(chē)的車(chē)輛數(shù)之和,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知實(shí)數(shù)a,b滿(mǎn)足﹣2≤a≤2,﹣2≤b≤2,則函數(shù)y= x3 ax2+bx﹣1有三個(gè)單調(diào)區(qū)間的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且Sn=2an﹣2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿(mǎn)足 = ﹣…+(﹣1)n+1 ,求數(shù)列{bn}的通項(xiàng)公式;
(3)在(2)的條件下,設(shè)cn=2n+λbn , 問(wèn)是否存在實(shí)數(shù)λ使得數(shù)列{cn}(n∈N*)是單調(diào)遞增數(shù)列?若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】橢圓E: + =1(a>b>0)的左右焦點(diǎn)分別為F1 , F2
(Ⅰ)若橢圓E的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、焦距成等差數(shù)列,求橢圓E的離心率;
(Ⅱ)若橢圓E過(guò)點(diǎn)A(0,﹣2),直線(xiàn)AF1 , AF2與橢圓的另一個(gè)交點(diǎn)分別為點(diǎn)B,C,且△ABC的面積為 ,求橢圓E的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案