【題目】數(shù)學(xué)中的數(shù)形結(jié)合也可以組成世間萬(wàn)物的絢麗畫面,一些優(yōu)美的曲線是數(shù)學(xué)形象美、對(duì)稱美、和諧美的產(chǎn)物,曲線為四葉玫瑰線,下列結(jié)論正確的有( )
(1)方程(),表示的曲線在第二和第四象限;
(2)曲線上任一點(diǎn)到坐標(biāo)原點(diǎn)的距離都不超過2;
(3)曲線構(gòu)成的四葉玫瑰線面積大于;
(4)曲線上有5個(gè)整點(diǎn)(橫、縱坐標(biāo)均為整數(shù)的點(diǎn));
A.(1)(2)B.(1)(2)(3)
C.(1)(2)(4)D.(1)(3)(4)
【答案】A
【解析】
因?yàn)?/span>,所以與異號(hào),僅限與第二和四象限,從而判斷(1).
利用基本不等式即可判斷(2);
將以為圓心、2為半徑的圓的面積與曲線圍成區(qū)域的面積進(jìn)行比較即可判斷(3);
先確定曲線經(jīng)過點(diǎn),再將,的整點(diǎn),和逐一代入曲線的方程進(jìn)行檢驗(yàn)即可判斷(4);
對(duì)于(1),因?yàn)?/span>,所以與異號(hào),僅限與第二和四象限,即(1)正確.
對(duì)于(2),因?yàn)?/span>,所以,
所以,
所以,即(2)正確;
對(duì)于(3),以為圓點(diǎn),2為半徑的圓的面積為,顯然曲線圍成的區(qū)域的面積小于圓的面積,即(3)錯(cuò)誤;
對(duì)于(4),只需要考慮曲線在第一象限內(nèi)經(jīng)過的整點(diǎn)即可,把,和代入曲線的方程驗(yàn)證可知,等號(hào)不成立,所以曲線在第一象限內(nèi)不經(jīng)過任何整點(diǎn),再結(jié)合曲線的對(duì)稱性可知,曲線只經(jīng)過整點(diǎn),即(4)錯(cuò)誤;
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是等差數(shù)列,其前項(xiàng)和為,數(shù)列是公比大于0的等比數(shù)列,且, , .
(Ⅰ)求數(shù)列和的通項(xiàng)公式;
(Ⅱ)令,求數(shù)列的前項(xiàng)和為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的極值;
(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),分別是橢圓的左,右焦點(diǎn),兩點(diǎn)分別是橢圓的上,下頂點(diǎn),是等腰直角三角形,延長(zhǎng)交橢圓于點(diǎn),且的周長(zhǎng)為.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)是橢圓上異于的動(dòng)點(diǎn),直線與直分別相交于兩點(diǎn),點(diǎn),求證:的外接圓恒過原點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中記載:將底面為直角三角形的直三棱柱稱為塹堵,將一塹堵沿其一頂點(diǎn)與相對(duì)的棱剖開,得到一個(gè)陽(yáng)馬(底面是長(zhǎng)方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個(gè)鱉臑(四個(gè)面均為直角三角形的四面體).在如圖所示的塹堵中,且有鱉臑C1-ABB1和鱉臑,現(xiàn)將鱉臑沿線BC1翻折,使點(diǎn)C與點(diǎn)B1重合,則鱉臑經(jīng)翻折后,與鱉臑拼接成的幾何體的外接球的表面積是______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為實(shí)數(shù),用表示不超過的最大整數(shù),例如,,,對(duì)于函數(shù),若存在,,使得,則稱函數(shù)是“函數(shù)”.
(1)判斷函數(shù),是否是“函數(shù)”;
(2)設(shè)函數(shù)是定義在上的周期函數(shù),其最小正周期是,若不是“函數(shù)”,求的最小值;
(3)若函數(shù)是“函數(shù)”,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左右焦點(diǎn)為,,離心率為,過點(diǎn)且垂直于軸的直線被橢圓截得的弦長(zhǎng)為1.
(1)求橢圓的方程;
(2)若直線交橢圓于點(diǎn),兩點(diǎn),與線段和橢圓短軸分別交于兩個(gè)不同點(diǎn),,且,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在處有最大值,求的值;
(2)當(dāng)時(shí),判斷的零點(diǎn)個(gè)數(shù),并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),直線過原點(diǎn)且傾斜角為,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線和直線的極坐標(biāo)方程;
(2)若相交于不同的兩點(diǎn),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com