【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,且2an+Sn=An2+Bn+C.
(1)當(dāng)A=B=0,C=1時(shí),求an;
(2)若數(shù)列{an}為等差數(shù)列,且A=1,C=﹣2. ①設(shè)bn=2nan , 求數(shù)列{bn}的前n項(xiàng)和;
②設(shè)cn= ,若不等式cn≥ 對任意n∈N*恒成立,求實(shí)數(shù)m的取值范圍.
【答案】
(1)解:當(dāng)A=B=0,C=1時(shí),2an+Sn=1,
∴ ;
當(dāng)n≥2時(shí),2an﹣1+Sn﹣1=1,
兩式作差得:3an=2an﹣1,即 ,
∴數(shù)列{an}是以 為首項(xiàng),以 為公比的等比數(shù)列,
∴
(2)解:當(dāng)A=1,C=﹣2時(shí),2an+Sn=n2+Bn﹣2,
∴ , , ,
∵數(shù)列{an}為等差數(shù)列,
∴ ,解得:B=4.
∴a1=1,a2=5,則d=4,
∴an=1+4(n﹣1)=4n﹣3,
① bn=2nan=(4n﹣3)2n,
∴數(shù)列{bn}的前n項(xiàng)和 ,
,
兩式作差得:
= =2﹣16+2n+3﹣(4n﹣3)2n+1,
∴ ;
②cn= = = ,
∵ 單調(diào)遞增,
∴當(dāng)n=1時(shí), 有最小值為 ,
∴ ,即m≤﹣14.
∴實(shí)數(shù)m的取值范圍是(﹣∞,﹣14]
【解析】(1)把A=B=0,C=1代入2an+Sn=An2+Bn+C,求得數(shù)列首項(xiàng),進(jìn)一步可得數(shù)列{an}是以 為首項(xiàng),以 為公比的等比數(shù)列,則數(shù)列的通項(xiàng)公式可求;(2)①由已知求出B,得到數(shù)列{an}的通項(xiàng)公式,代入bn=2nan , 利用錯(cuò)位相減法求得數(shù)列{bn}的前n項(xiàng)和Tn;②把Tn代入cn= ,由函數(shù)的單調(diào)性求其最小值,由 小于等于cn的最小值求得m的取值范圍.
【考點(diǎn)精析】通過靈活運(yùn)用等差數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和,掌握通項(xiàng)公式:或;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的角A、B、C所對的邊分別是a、b、c,設(shè)向量 , , .
(1)若 ∥ ,求證:△ABC為等腰三角形;
(2)若 ⊥ ,邊長c=2,角C= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校用簡單隨機(jī)抽樣方法抽取了30名同學(xué),對其每月平均課外閱讀時(shí)間(單位:小時(shí))進(jìn)行調(diào)查,莖葉圖如圖:
若將月均課外閱讀時(shí)間不低于30小時(shí)的學(xué)生稱為“讀書迷”.
(1)將頻率視為概率,估計(jì)該校900名學(xué)生中“讀書迷”有多少人?
(2)從已抽取的7名“讀書迷”中隨機(jī)抽取男、女“讀書迷”各1人,參加讀書日宣傳活動(dòng).
(i)共有多少種不同的抽取方法?
(ii)求抽取的男、女兩位“讀書迷”月均讀書時(shí)間相差不超過2小時(shí)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某市2017年3月1日至16日的空氣質(zhì)量指數(shù)趨勢圖,空氣質(zhì)量指數(shù)小于表示空氣質(zhì)量優(yōu)良,空氣質(zhì)量指數(shù)大于表示空氣重度污染.
(1)若該人隨機(jī)選擇3月1日至3月14日中的某一天到達(dá)該市,到達(dá)后停留天(到達(dá)當(dāng)日算天),求此人停留期間空氣重度污染的天數(shù)為天的概率;
(2)若該人隨機(jī)選擇3月7日至3月12日中的天到達(dá)該市,求這天中空氣質(zhì)量恰有天是重度污染的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)在處取得極大值,求正實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=3sin(2x+ )的圖象為C,關(guān)于函數(shù)f(x)及其圖象的判斷如下: ①圖象C關(guān)于點(diǎn)( ,0)對稱;
②圖象C關(guān)于直線x= 對稱;
③由圖象C向右平移 個(gè)單位長度可以得到y(tǒng)=3sin2x的圖象;
④函數(shù)f(x)在區(qū)間(﹣ , )內(nèi)是減函數(shù);
⑤函數(shù)|f(x)+1|的最小正周期為 .
其中正確的結(jié)論序號(hào)是 . (把你認(rèn)為正確的結(jié)論序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓過, 兩點(diǎn),且圓心在直線上.
(1)求圓的方程;
(2)若直線過點(diǎn)且被圓截得的線段長為,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,分別根據(jù)下列條件解三角形,其中有兩個(gè)解的是( )
A.a=8b=16A=30°
B.a=25b=30A=150°
C.a=30b=40A=30°
D.a=72b=60A=135°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一鮮花店根據(jù)一個(gè)月(30天)某種鮮花的日銷售量與銷售天數(shù)統(tǒng)計(jì)如下,將日銷售量落入各組區(qū)間頻率視為概率.
日銷售量(枝) | |||||
銷售天數(shù) | 3天 | 5天 | 13天 | 6天 | 3天 |
(1)試求這30天中日銷售量低于100枝的概率;
(2)若此花店在日銷售量低于100枝的時(shí)候選擇2天作促銷活動(dòng),求這2天恰好是在日銷售量低于50枝時(shí)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com