精英家教網 > 高中數學 > 題目詳情
如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

【答案】分析:先假設經過t小時在N處追上海盜船,在△OMN中由余弦定理可得t的關系式,解得t>0,進而推斷快艇能追上海盜船,再利用正弦定理求得sin(θ°+40°)的值.
解答:解:假設經過t小時在N處追上海盜船.
在△OMN中,|OM|=5,|MN|=20t,|ON|=30t,∠OMN=120°.
由余弦定理有900t2=400t2+25-2×5×20tcos120°=400t2+25+100t,
化簡得20t2-4t-1=0,解之得>0,∴快艇能追上海盜船.
由正弦定理有,
∴sin(θ°+20°)=
點評:本題主要考查正弦定理和余弦定理在實際中的應用.屬基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

查看答案和解析>>

科目:高中數學 來源:2010年廣東省高考數學沖刺預測試卷15(文科)(解析版) 題型:解答題

如圖所示,正在亞丁灣執(zhí)行護航任務的某導彈護衛(wèi)艦,突然收到一艘商船的求救信號,緊急前往相關海域.到達相關海域O處后發(fā)現(xiàn),在南偏西20°、5海里外的洋面M處有一條海盜船,它正以每小時20海里的速度向南偏東40°的方向逃竄.某導彈護衛(wèi)艦當即施放載有突擊隊員的快艇進行攔截,快艇以每小時30海里的速度向南偏東θ°的方向全速追擊.請問:快艇能否追上海盜船?如果能追上,請求出sin(θ°+20°)的值;如果未能追上,請說明理由.(假設海面上風平浪靜、海盜船逃竄的航向不變、快艇運轉正常無故障等)

查看答案和解析>>

同步練習冊答案