數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
已知為R上的可導函數,且均有′(x),則有( )
D
解析試題分析:因為均有,即,構造函數,則,所以為R上的單調遞減函數,所以,即,所以。考點:利用導數研究函數的單調性。點評:做本題的關鍵是構造函數。屬于中檔題。
科目:高中數學 來源: 題型:單選題
若a>b>c,則下列不等式成立的是( )
設則的大小關系是
設,則
不等式≥0的解集是( )
下列式子中成立的是( )
不等式的解集是( )
三個數之間的大小關系是( )
科目:高中數學 來源: 題型:填空題
函數在恒為正,則實數的范圍是 .
百度致信 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)