精英家教網 > 高中數學 > 題目詳情

【題目】已知正方體

求證:(ⅰ

【答案】1)證明見解析;(2)證明見解析

【解析】試題分析:(1由平行四邊形的性質可得由線面平行的判定定理可得平面,同理可得平面,從而根據面面平行的判定定理可得結論;2由三垂線定理得,同理,在根據線面垂直的判定定理可得結論.

試題解析:( )由正方的性質可知,

是平行四邊形,

,

平面, 平面

平面,

同理平面

∴平面平面

,

在面內的射影,

,

∴由三垂線定理得,

同理,

平面

【方法點晴】本題主要考查正方體的性質、線面垂直的判定定理及面面垂直的判定定理,屬于難題.解答空間幾何體中垂直關系時,一般要根據已知條件把空間中的線線、線面、面面之間垂直關系進行轉化,轉化時要正確運用有關的定理,找出足夠的條件進行推理;證明直線和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推論;(3)利用面面平行的性質;(4)利用面面垂直的性質,當兩個平面垂直時,在一個平面內垂直于交線的直線垂直于另一個平面.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】給出下列幾個命題:

① 命題任意,都有,則存在,使得

② 命題“若,則”的逆命題為假命題.

③ 空間任意一點和三點,則三點共線的充分不必要條件.

④ 線性回歸方程對應的直線一定經過其樣本數據點中的一個.

其中不正確的個數為

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列的前n項的和Sn,點(n,Sn)在函數=2x2+4x圖象上

(1)證明是等差數列;

(2)若函數,數列{bn}滿足bn=,記cn=anbn,求數列前n項和Tn;

(3)是否存在實數λ,使得當x≤λ時,f(x)=﹣x2+4x﹣≤0對任意n∈N*恒成立?若存在,求出最大的實數λ,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x)= sin2x+2+2cos2x.
(1)求f(x)的最小正周期與單調遞減區(qū)間;
(2)在△ABC中,a,b,c分別是角A、B、C的對邊,若f(A)=4,b=1,△ABC的面積為 ,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知 ,當k為何值時,
(1) 垂直?
(2) 平行?平行時它們是同向還是反向?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】五一期間,某商場決定從種服裝、種家電、種日用品中,選出種商品進行促銷活動.

(1)試求選出種商品中至少有一種是家電的概率;

(2)商場對選出的某商品采用抽獎方式進行促銷,即在該商品現(xiàn)價的基礎上將價格提高元,規(guī)定購買該商品的顧客有次抽獎的機會: 若中一次獎,則獲得數額為元的獎金;若中兩次獎,則獲得數額為元的獎金;若中三次獎,則共獲得數額為 元的獎金. 假設顧客每次抽獎中獎的概率都是,請問: 商場將獎金數額最高定為多少元,才能使促銷方案對商場有利?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4-4:坐標系與參數方程.

在平面直角坐標系中,傾斜角為的直線的參數方程為為參數).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)已知點.若點的極坐標為,直線經過點且與曲線相交于兩點,設線段的中點為,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在北京召開的國際數學家大會會標如圖所示,它是由4個相同的直角三角形與中間的小正方形拼成的一大正方形,若直角三角形中較小的銳角為θ,大正方形的面積是1,小正方形的面積是 ,則sin2θ﹣cos2θ的值等于(

A.1
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中, 平面 , , , 為線段上一點, , 的中點.

(1)證明: 平面;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

同步練習冊答案