已知數(shù)列{an}的首項(xiàng)a1=5前n項(xiàng)和為Sn,且

(1)

證明數(shù)列{an+1}是等比數(shù)列;

(2)

,求函數(shù)y=f(x)在點(diǎn)x=1處的導(dǎo)數(shù)f′(1);并比較2f′(1)與23n2-13n的大。

答案:
解析:

(1)

解:由已知可得

兩式相減得

從而

當(dāng)時(shí)所以

所以從而

故總有,

從而

即數(shù)列是首項(xiàng)為6,公比為2的等比數(shù)列;

(2)

解:由(I)知因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0403/0018/1cd9a5e240087d7f0630cce11649c880/C/Image239.gif" width=182 HEIGHT=24>

所以

從而

由上

=12

當(dāng)時(shí),①式=0所以;<

當(dāng)時(shí),①式=-12所以

當(dāng)時(shí),n-1>0

所以即①從而


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案