精英家教網 > 高中數學 > 題目詳情
設α,β是一個鈍角三角形的兩個銳角,下列四個不等式中不正確的是( 。
A.tgatanβ<1B.sinα+sinβ<
2
C.cosα+cosβ>1D.
1
2
tg(α+β)<tg
α+β
2
因為對于鈍角三角形,必定有A+B<90,所以
A.tanAtanB<tanAtan(90-A)=tanAcotA=1,故A對.
B.sinA+sinB<sinA+sin(90-A)=sinA+cosA=
2
sin(A+45)≤
2
,所以B對.
C.cosA+cosB>cosA+cos(90-A)=cosA+sinA=
2
sin(A+45)≥
2
>1,故C對.
D.舉個例子,假如A=30,B=30,則0.5•tan(A+B)=0.5•tan60°=0.5
3
,而
tan(A+B)
2
=tan30°=
3
3
比0.5
3
小,故等式不成立.
故選D
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論正確的是
①②③
①②③
.(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•湖南)設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構成一個三角形的三條邊長,且a=b},則(a,b,c)∈M所對應的f(x)的零點的取值集合為
{x|0<x≤1}
{x|0<x≤1}

(2)若a,b,c是△ABC的三條邊長,則下列結論正確的是
①②③
①②③
.(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論中正確的是( 。
①對一切x∈(-∞,1)都有f(x)>0;
②存在x∈R+,使xax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則存在x∈(1,2),使f(x)=0.
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中數學 來源:湖南 題型:填空題

設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構成一個三角形的三條邊長,且a=b},則(a,b,c)∈M所對應的f(x)的零點的取值集合為______.
(2)若a,b,c是△ABC的三條邊長,則下列結論正確的是______.(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

科目:高中數學 來源:2013年湖南省高考數學試卷(理科)(解析版) 題型:填空題

設函數f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a,b,c不能構成一個三角形的三條邊長,且a=b},則(a,b,c)∈M所對應的f(x)的零點的取值集合為   
(2)若a,b,c是△ABC的三條邊長,則下列結論正確的是    .(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.

查看答案和解析>>

同步練習冊答案