定義域?yàn)镽的函數(shù)f(x)滿足:對于任意的實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)成立,且當(dāng)x>0時(shí)f(x)<0恒成立.
(1)判斷函數(shù)f(x)的奇偶性,并證明你的結(jié)論;
(2)證明f(x)為減函數(shù);若函數(shù)f(x)在[-3,3]上總有f(x)≤6成立,試確定f(1)應(yīng)滿足的條件;(3)解關(guān)于x的不等式,(n是一個(gè)給定的自然數(shù),a<0)
【答案】分析:(1)令x=y=0求出f(0),再令x=-y即可判斷出奇偶性.
(2)利用函數(shù)單調(diào)性的定義,設(shè)任意x1,x2∈R且x1<x2,結(jié)合已知不等式比較f(x1)和f(x2)的大小,即可判斷出單調(diào)性.
由單調(diào)性可求出f(x)在[-3,3]上的最大值為f(-3),已知不等式可轉(zhuǎn)化為f(-3)≤6,再由已知建立f(-1)和f(-3)的聯(lián)系即可.
(3),∴f(ax2)-f(a2x)>n[f(x)-f(a)],由已知得:f[n(x-a)]=nf(x-a)∴f(ax2-a2x)>f[n(x-a)],由(2)中的單調(diào)性轉(zhuǎn)化為ax2-a2x<n(x-a).即(x-a)(ax-n)<0,按照二次不等式兩根的大小進(jìn)行分類討論解不等式即可.
解答:解:(1)由已知對于任意x∈R,y∈R,f(x+y)=f(x)+f(y)恒成立
令x=y=0,得f(0+0)=f(0)+f(0),∴f(0)=0
令x=-y,得f(x-x)=f(x)+f(-x)=0
∴對于任意x,都有f(-x)=-f(x)∴f(x)是奇函數(shù).
(2)設(shè)任意x1,x2∈R且x1<x2,則x2-x1>0,由已知f(x2-x1)<0(1)
又f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1)(2)
由(1)(2)得f(x1)>f(x2),
根據(jù)函數(shù)單調(diào)性的定義知f(x)在(-∞,+∞)上是減函數(shù).
∴f(x)在[-3,3]上的最大值為f(-3).
要使f(x)≤6恒成立,當(dāng)且僅當(dāng)f(-3)≤6,
又∵f(-3)=-f(3)=-f(2+1)=-[f(2)+f(1)]
=-[f(1)+f(1)+f(1)]=-3f(1),∴f(1)≥-2.
又x>1,f(x)<0,∴f(1)∈[-2,0)
,
∴f(ax2)-f(a2x)>n[f(x)-f(a)]
∴f(ax2-a2x)>nf(x-a),
由已知得:f[n(x-a)]=nf(x-a)
∴f(ax2-a2x)>f[n(x-a)],
∵f(x)在(-∞,+∞)上是減函數(shù)
∴ax2-a2x<n(x-a).即(x-a)(ax-n)<0,
∵a<0,∴,
討論:①當(dāng),即,解集為:或x<a}
②當(dāng)a=時(shí),原不等式解集③當(dāng)<a<0時(shí),
即-<a<0時(shí),原不等式的解集為
點(diǎn)評:本題考查抽象函數(shù)的奇偶性和單調(diào)性的判斷和應(yīng)用:解不等式,及分類討論思想,綜合性強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函數(shù)
(1)a+b=
3
3
;
(2)若函數(shù)g(x)=f(
2x+1
)+f(k-x)
有兩個(gè)零點(diǎn),則k的取值范圍是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+b2x+1+a
是奇函數(shù).
(1)求f(x)的解析式;
(2)用定義證明f(x)為R上的減函數(shù);
(3)若對任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+12x+1+a
是奇函數(shù),則a=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義域?yàn)镽的函數(shù)f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若關(guān)于x的方程f2(x)+bf(x)+c=0恰有5個(gè)不同的實(shí)數(shù)解x1,x2,x3,x4,x5,則x1+x2+x3+x4+x5=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù).
(Ⅰ)求實(shí)數(shù)a值;
(Ⅱ)判斷并證明該函數(shù)在定義域R上的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊答案