【題目】改革開放40年,我國經(jīng)濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各50人,進行問卷測評,所得分數(shù)的頻率分布直方圖如圖所示.規(guī)定得分在80分以上為交通安全意識強.

安全意識強

安全意識不強

合計

男性

女性

合計

(Ⅰ)求的值,并估計該城市駕駛員交通安全意識強的概率;

(Ⅱ)已知交通安全意識強的樣本中男女比例為4:1,完成2×2列聯(lián)表,并判斷有多大把握認為交通安全意識與性別有關;

(Ⅲ)在(Ⅱ)的條件下,從交通安全意識強的駕駛員中隨機抽取2人,求抽到的女性人數(shù)的分布列及期望.

附:,其中

0.010

0.005

0.001

6.635

7.879

10.828

【答案】(Ⅰ).0.2(Ⅱ)見解析,有的把握認為交通安全意識與性別有關(Ⅲ)見解析,

【解析】

(Ⅰ)直接根據(jù)頻率和為1計算得到答案.

(Ⅱ)完善列聯(lián)表,計算,對比臨界值表得到答案.

(Ⅲ)的取值為,計算概率得到分布列,計算數(shù)學期望得到答案.

(Ⅰ) ,解得.

所以該城市駕駛員交通安全意識強的概率.

(Ⅱ)

安全意識強

安全意識不強

合計

男性

16

34

50

女性

4

46

50

合計

20

80

100

,

所以有的把握認為交通安全意識與性別有關

(Ⅲ)的取值為

所以的分布列為

期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為實數(shù),.證明:

(1)把寫成無窮乘積有唯一的表達式其中,為正整數(shù),滿足;

(2)是有理數(shù),當且僅當它的無窮乘積具有下列性質:存在,對所有的,滿足

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=,若關于的方程恰好有 4 個不相等的實數(shù)解,則實數(shù)的取值范圍為( )

A. B. C. D. (0,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設L、M、N分別為的∠BAC、∠ CBA、∠ ACB內的點,且∠BAL=∠ ACL,∠ LBA=∠ LAC,∠ CBM=∠ BAM,∠ MCB=∠ MBA,∠ ACN=∠ CBN,∠ NAC=∠ NCB.

證明:(1) AL、BM、CN三線交于一點P;

(2)L、M、N、P四點共圓.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,平面ABCD平面PAD,,,EPD的中點.

證明:;

,點M在線段PC上且異面直線BMCE所成角的余弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某土特產(chǎn)超市為預估2020年元旦期間游客購買土特產(chǎn)的情況,對2019年元旦期間的90位游客購買情況進行統(tǒng)計,得到如下人數(shù)分布表.

購買金額(元)

人數(shù)

10

15

20

15

20

10

1)根據(jù)以上數(shù)據(jù)完成列聯(lián)表,并判斷是否有的把握認為購買金額是否少于60元與性別有關.

不少于60

少于60

合計

40

18

合計

2)為吸引游客,該超市推出一種優(yōu)惠方案,購買金額不少于60元可抽獎3次,每次中獎概率為(每次抽獎互不影響,且的值等于人數(shù)分布表中購買金額不少于60元的頻率),中獎1次減5元,中獎2次減10元,中獎3次減15.若游客甲計劃購買80元的土特產(chǎn),請列出實際付款數(shù)(元)的分布列并求其數(shù)學期望.

附:參考公式和數(shù)據(jù):,.

附表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某城市的公交公司為了方便市民出行,科學規(guī)劃車輛投放,在一個人員密集流動地段增設一個起點站,為了研究車輛發(fā)車間隔時間與乘客等候人數(shù)之間的關系,經(jīng)過調查得出了如下數(shù)據(jù):

間隔時間(分鐘)

10

11

12

13

14

15

等待人數(shù)(人)

23

25

26

29

28

31

調查小組先從這六組數(shù)據(jù)中選取四組數(shù)據(jù)作線性回歸分析,然后用剩下的兩組數(shù)據(jù)進行檢驗

(1)求從這六組數(shù)據(jù)中選取四組數(shù)據(jù)后,剩下的的兩組數(shù)據(jù)不相鄰的概率:

(2)若先取的是后面四組數(shù)據(jù),求關干的線性回歸方程;

(3)規(guī)定根據(jù)(2)中線性回歸方程預利的數(shù)據(jù)與用剩下的兩組實際數(shù)據(jù)相差不超過人,則所求出的線性回歸方程是“最佳回歸方程”,請判斷(2)中所求的是 “最佳回歸方程”嗎?為了使等候的乘客不超過人,則間隔時間設置為分鐘合適嗎?

附:對于一組組數(shù)據(jù), 其回歸直線 +的斜率和截距的最小二乘估計分別為: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】每個國家對退休年齡都有不一樣的規(guī)定,從2018年開始,我國關于延遲退休的話題一直在網(wǎng)上熱議,為了了解市民對延遲退休的態(tài)度,現(xiàn)從某地市民中隨機選取100人進行調查,調查情況如下表:

年齡段(單位:歲)

被調查的人數(shù)

贊成的人數(shù)

1)從贊成延遲退休的人中任選1人,此人年齡在的概率為,求出表格中的值;

2)若從年齡在的參與調查的市民中按照是否贊成延遲退休進行分層抽樣,從中抽取10人參與某項調查,然后再從這10人中隨機抽取4人參加座談會,記這4人中贊成延遲退休的人數(shù)為,求的分布列及數(shù)學期望.

查看答案和解析>>

同步練習冊答案