定義在R上的函數(shù)f(x)滿足f(x)=則f(2014)=________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第8課時(shí)練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.
(1)記集合M={(a,b,c)|a、b、c不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng),且a=b},則(a,b,c)∈M所對(duì)應(yīng)的f(x)的零點(diǎn)的取值集合為________.
(2)若a、b、c是△ABC的三條邊長(zhǎng),則下列結(jié)論正確的是________.(填序號(hào))
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax、bx、cx不能構(gòu)成一個(gè)三角形的三條邊長(zhǎng);
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第6課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=x2+mx+n的圖象過點(diǎn)(1,3),且f(-1+x)=f(-1-x)對(duì)任意實(shí)數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在(-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第5課時(shí)練習(xí)卷(解析版) 題型:解答題
當(dāng)m為何值時(shí),方程x2-4|x|+5-m=0有四個(gè)不相等的實(shí)數(shù)根?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第5課時(shí)練習(xí)卷(解析版) 題型:填空題
某同學(xué)從A地跑步到B地,隨路程的增加速度減。粢y表示該同學(xué)離B地的距離,x表示出發(fā)后的時(shí)間,則下列圖象中較符合該同學(xué)走法的是____________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
已知定義在R上的函數(shù)f(x)對(duì)任意實(shí)數(shù)x、y恒有f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0,又f(1)=-.
(1)求證:f(x)為奇函數(shù);
(2)求證:f(x)在R上是減函數(shù);
(3)求f(x)在[-3,6]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第4課時(shí)練習(xí)卷(解析版) 題型:解答題
判斷下列函數(shù)的奇偶性:
(1)f(x)=x3-;
(2)f(x)=;
(3)f(x)=(x-1);
(4)f(x)=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第3課時(shí)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=lg(k∈R,且k>0).
(1)求函數(shù)f(x)的定義域;
(2)若函數(shù)f(x)在[10,+∞)上單調(diào)遞增,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第二章第14課時(shí)練習(xí)卷(解析版) 題型:填空題
對(duì)于實(shí)數(shù)a和b,定義運(yùn)算“?”:a?b=設(shè)f(x)=(2x-1)?(x-1),且關(guān)于x的方程為f(x)=m(m∈R)恰有三個(gè)互不相等的實(shí)數(shù)根x1,x2,x3,則x1、x2、x3的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com