長為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動,,則點(diǎn)C的軌跡是(    )

A.線段         B.圓                   C.橢圓         D.雙曲線

 

解析:本題考查動點(diǎn)軌跡方程的求法.設(shè)C(x,y),A(α,0),B(b,0),則a2+b2=9  (1),又=2,所以(x-a,y)=2(-x,b-y),即(2)

代入(1)式整理可得.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

定長為3的線段AB兩端點(diǎn)A、B分別在x軸,y軸上滑動,M在線段AB上,且
AM
=2
MB

(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過F(0,
3
)
且不垂直于坐標(biāo)軸的動直線l交軌跡C于A、B兩點(diǎn),問:線段OF上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定長為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動,M在線段AB上,且

(1)求點(diǎn)M的軌跡C的方程;

 (2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點(diǎn),問:線段上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省八校高三第二次聯(lián)考數(shù)學(xué)(理) 題型:解答題

定長為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動,M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點(diǎn),問:線段上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省武漢二中、龍泉中學(xué)高二下學(xué)期期末聯(lián)考理科數(shù)學(xué) 題型:解答題

(本小題滿分13分)
定長為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動,M在線段AB上,且
(1)求點(diǎn)M的軌跡C的方程;
(2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點(diǎn),問:線段
是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年湖北省八校高三第二次聯(lián)考數(shù)學(xué)(理) 題型:簡答題

定長為3的線段AB兩端點(diǎn)A、B分別在軸,軸上滑動,M在線段AB上,且

(1)求點(diǎn)M的軌跡C的方程;

 (2)設(shè)過且不垂直于坐標(biāo)軸的動直線交軌跡C于A、B兩點(diǎn),問:線段上是否存在一點(diǎn)D,使得以DA,DB為鄰邊的平行四邊形為菱形?作出判斷并證明。

 

查看答案和解析>>

同步練習(xí)冊答案