【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸為極軸建立極坐標(biāo)系,曲線C1的方程為 (θ為參數(shù)),曲線C2的極坐標(biāo)方程為C2:ρcosθ+ρsinθ=1,若曲線C1與C2相交于A、B兩點(diǎn).
(1)求|AB|的值;
(2)求點(diǎn)M(﹣1,2)到A、B兩點(diǎn)的距離之積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》之后,人們學(xué)會了用數(shù)列的知識來解決問題.公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作《張丘建算經(jīng)》卷上有題為:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”.利用這種思想設(shè)計的一個程序框圖如圖,若輸出的S值為九匹三丈(一匹=4丈,一丈=10尺),則框圖中d為( )
A.尺
B.尺
C.尺
D.尺
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}中, 的對稱軸為 .
(1)試證明{2nan}是等差數(shù)列,并求{an}的通項公式;
(2)設(shè){an}的前n項和為Sn , 求Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,a、b、c分別為角A、B、C所對的邊,且 =2csinA
(1)確定角C的大;
(2)若c= ,且△ABC的面積為 ,求a+b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知a(sinA﹣sinB)=(c﹣b)(sinC+sinB) (Ⅰ)求角C;
(Ⅱ)若c= ,△ABC的面積為 ,求△ABC的周長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代有著輝煌的數(shù)學(xué)研究成果.《周髀算經(jīng)》、《九章算術(shù)》、《海島算經(jīng)》、《孫子算經(jīng)》、…、《輯古算經(jīng)》等算經(jīng)10部專著,有著十分豐富多彩的內(nèi)容,是了解我國古代數(shù)學(xué)的重要文獻(xiàn).這10部專著中有7部產(chǎn)生于魏晉南北朝時期.某中學(xué)擬從這10部名著中選擇2部作為“數(shù)學(xué)文化”校本課程學(xué)習(xí)內(nèi)容,則所選2部名著中至少有一部是魏晉南北朝時期的名著的概率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (a∈R)
(1)討論f(x)在(0,+∞)上的單調(diào)性;
(2)若對任意的正整數(shù)[﹣1,1)都有 成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函數(shù),A,B是銳角三角形的兩個內(nèi)角,則( )
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com