【題目】設(shè) ,且滿足cosa=a,sin(cosb)=b,cos(sinc)=c,則a,b,c的大小關(guān)系為 .
【答案】b<a<c
【解析】解:先證明當x∈(0, )時,sinx<x
設(shè)y=sinx﹣x,則y′=cosx﹣1<0,∴y=sinx﹣x為(0, )上的減函數(shù),∴y<sino﹣0=0,即sinx<x
同理可證明f(x)=sin(cosx)﹣x為(0, )上的減函數(shù),g(x)=cos(sinx)﹣x為(0, )上的減函數(shù)
∵sina<a
∴cos(sina)﹣a=cos(sina)﹣cosa>0,而cos(sinc)﹣c=0,
∴g(a)>g(c),a、c∈(0, ),
∴a<c
同理∵x∈(0, )時,sinx<x,∴sin(cosa)<cosa
∴sin(cosa)﹣a=sin(cosa)﹣cosa<0,而sin(cosb)﹣b=0
∴f(a)<f(b),a、b∈(0, ),
∴a>b
綜上所述,b<a<c
所以答案是b<a<c.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,ABCD﹣A1B1C1D1是棱長為a的正方體,M、N分別是下底面的棱A1B1 , B1C1的中點,P是上底面的棱AD上的一點,AP= ,過P、M、N的平面交上底面于PQ,Q在CD上,則PQ= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}為單調(diào)遞減的等差數(shù)列,a1+a2+a3=21,且a1﹣1,a2﹣3,a3﹣3成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前項n和Tn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)解析式為 . (Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當x≥0時,f(x)=x2﹣3x,則函數(shù)g(x)=f(x)﹣x+3的零點的集合為( )
A.{1,3}
B.{﹣3,﹣1,1,3}
C.{2﹣ ,1,3}
D.{﹣2﹣ ,1,3}
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應(yīng)分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,90)之外的人數(shù).
分數(shù)段 | [50,60) | [60,70) | [70,80) | [80,90) |
x:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,AD=6,PA⊥底面ABCD,E是PD上的動點.若CE∥平面PAB,則三棱錐C﹣ABE的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知傾斜角60°為的直線l平分圓:x2+y2+2x+4y﹣4=0,則直線l的方程為( )
A. x﹣y+ +2=0
B. x+y+ +2=0
C. x﹣y+ ﹣2=0
D. x﹣y﹣ +2=0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.奇函數(shù)f(x)的圖象經(jīng)過(0,0)點
B.y=|x+1|+|x﹣1|(x∈(﹣4,4])是偶函數(shù)
C.冪函數(shù)y=x 過(1,1)點
D.y=sin2x(x∈[0,5π])是以π為周期的函數(shù)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com