【題目】從拋物線上任意一點(diǎn)Px軸作垂線段,垂足為Q,點(diǎn)M是線段上的一點(diǎn),且滿足

(1)求點(diǎn)M的軌跡C的方程;

(2)設(shè)直線與軌跡c交于兩點(diǎn),TC上異于的任意一點(diǎn),直線,分別與直線交于兩點(diǎn),以為直徑的圓是否過(guò)x軸上的定點(diǎn)?若過(guò)定點(diǎn),求出符合條件的定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

【答案】(1) (2)見(jiàn)解析

【解析】

1)利用相關(guān)點(diǎn)法,設(shè)設(shè),,則點(diǎn)的坐標(biāo)為,由,從而得到,即.化簡(jiǎn)求得結(jié)果;

2)設(shè)出點(diǎn)A,B的坐標(biāo),將直線與曲線的方程聯(lián)立,消元得到,根據(jù)韋達(dá)定理得到 = =,設(shè)點(diǎn),寫出直線AT的方程,進(jìn)而求得點(diǎn)D的坐標(biāo),同理求得點(diǎn)E的坐標(biāo),如果以為直徑的圓過(guò)軸某一定點(diǎn),則滿足,利用向量數(shù)量積坐標(biāo)公式求得結(jié)果.

(1)設(shè),,則點(diǎn)的坐標(biāo)為

因?yàn)?/span>,

所以,

,

因?yàn)辄c(diǎn)在拋物線上,

所以,即

所以點(diǎn)的軌跡的方程為

(2)解法1:設(shè)直線與曲線的交點(diǎn)坐標(biāo)為 ,

由韋達(dá)定理得 = =

設(shè)點(diǎn),則

所以直線的方程為

,得點(diǎn)的坐標(biāo)為

同理可得點(diǎn)的坐標(biāo)為

如果以為直徑的圓過(guò)軸某一定點(diǎn),則滿足

因?yàn)?/span>

所以

,解得

故以為直徑的圓過(guò)軸上的定點(diǎn)

解法2:直線與曲線的交點(diǎn)坐標(biāo)為,,

若取,則,與直線的交點(diǎn)坐標(biāo)為,

所以以為直徑的圓的方程為

該圓與軸的交點(diǎn)坐標(biāo)為

所以符合題意的定點(diǎn)只能是

設(shè)直線與曲線的交點(diǎn)坐標(biāo)為 ,

由韋達(dá)定理得

設(shè)點(diǎn),則

所以直線的方程為

,得點(diǎn)的坐標(biāo)為

同理可得點(diǎn)的坐標(biāo)為

若點(diǎn)滿足要求,則滿足

因?yàn)?/span>

所以點(diǎn)滿足題意.

同理可證點(diǎn)也滿足題意.

故以為直徑的圓過(guò)軸上的定點(diǎn)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】條件

1)條件:復(fù)數(shù),指明的說(shuō)明條件?若滿足條件,記,求

2)若上問(wèn)中,記時(shí)的在平面直角坐標(biāo)系的點(diǎn)存在過(guò)點(diǎn)的拋物線頂點(diǎn)在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,求拋物線的解析式。

3)自(2)中點(diǎn)出發(fā)的一束光線經(jīng)拋物線上一點(diǎn)反射后沿平行于拋物線對(duì)稱軸方向射出,求:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】首項(xiàng)為O的無(wú)窮數(shù)列同時(shí)滿足下面兩個(gè)條件:

;②

(1)請(qǐng)直接寫出的所有可能值;

(2)記,若對(duì)任意成立,求的通項(xiàng)公式;

(3)對(duì)于給定的正整數(shù),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,動(dòng)點(diǎn)分別與兩個(gè)定點(diǎn),的連線的斜率之積為.

(1)求動(dòng)點(diǎn)的軌跡的方程;

(2)設(shè)過(guò)點(diǎn)的直線與軌跡交于,兩點(diǎn),判斷直線與以線段為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正三棱柱的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是4的中點(diǎn).中點(diǎn),中點(diǎn),中點(diǎn),

1)計(jì)算異面直線所成角的余弦值

2)求證:平面

3)求證:面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)戶計(jì)劃種植萵筍和西紅柿,種植面積不超過(guò)畝,投入資金不超過(guò)萬(wàn)元,假設(shè)種植萵筍和西紅柿的產(chǎn)量、成本和售價(jià)如下表:

年產(chǎn)量/畝

年種植成本/畝

每噸售價(jià)

萵筍

5噸

1萬(wàn)元

0.5萬(wàn)元

西紅柿

4.5噸

0.5萬(wàn)元

0.4萬(wàn)元

那么,該農(nóng)戶一年種植總利潤(rùn)(總利潤(rùn)=總銷售收入-總種植成本)的最大值為____萬(wàn)元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)()是奇函數(shù).

(1)求實(shí)數(shù)的值;

(2)用函數(shù)單調(diào)性的定義證明函數(shù)上是增函數(shù);

(3)對(duì)任意的,若不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個(gè)動(dòng)點(diǎn),點(diǎn),若的最小值為0,則函數(shù)的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)討論的單調(diào)性;

2)若函數(shù)上單調(diào)遞增,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案