A. | (-3,+∞) | B. | (-3,-2] | C. | [-3,0] | D. | [-2,1] |
分析 由題意可得h(x)=f(x)-g(x)=x2-4x+1-m 在[0,3]上有兩個(gè)不同的零點(diǎn),故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(2)<0}\end{array}\right.$,由此求得m的取值范圍.
解答 解:∵f(x)=x2-3x+1與g(x)=x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,
故函數(shù)y=h(x)=f(x)-g(x)=x2-4x+1-m在[0,3]上有兩個(gè)不同的零點(diǎn),
故有$\left\{\begin{array}{l}{h(0)≥0}\\{h(3)≥0}\\{h(2)<0}\end{array}\right.$,即 $\left\{\begin{array}{l}{1-m≥0}\\{-2-m≥0}\\{-3-m<0}\end{array}\right.$,
解得-3<m≤-2,
故選:B.
點(diǎn)評(píng) 本題考查函數(shù)零點(diǎn)的判定定理,“關(guān)聯(lián)函數(shù)”的定義,二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{4}$+1 | B. | $\frac{5π}{4}$ | C. | $\frac{5}{4}$ | D. | π+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=sin2x+cos2x | B. | y=sinx+cosx | C. | y=cos(2x+$\frac{π}{2}$) | D. | y=sin(2x+$\frac{π}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{37}{4}$] | B. | (-∞,5] | C. | [5,+∞) | D. | [$\frac{37}{4}$,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com