【題目】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,分別是的極值點,且有,則函數(shù) ( )
A.在區(qū)間上單調(diào)遞增B.在區(qū)間上單調(diào)遞增
C.在區(qū)間上單調(diào)遞減D.在區(qū)間上單調(diào)遞減
【答案】D
【解析】
先得到的一個極值大點,然后根據(jù),得到的一個極大值點或極小值點,分別得到,再得到的解析式,再分別求出其單調(diào)區(qū)間,判斷四個選項是否符合,從而得到答案.
,可知是其一個極值點,
,
因為分別是的極值點,且有,
所以的一個極大值點為,
或者的一個極小值點為,
①的一個極大值點為時,
代入到,得,
即,,
即,,
因為,所以,,
所以,
,,
即,,
所以的單調(diào)遞增區(qū)間為,,
,,
即,,
所以的單調(diào)遞減區(qū)間為,,
因此可得,在區(qū)間上單調(diào)遞減,選項D符合.
②的一個極小值點為時,
代入到,得,
即,,
即,,
因為,所以,,
所以,
,,
即,,
所以的單調(diào)遞增區(qū)間為,,
,,
即,,
所以的單調(diào)遞減區(qū)間為,,
所以這種情況下,沒有選項符合.
故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列的前項和為,且.
(1)求出,,的值,并求出及數(shù)列的通項公式;
(2)設,求數(shù)列的前項和;
(3)設,在數(shù)列中取出(且)項,按照原來的順序排列成一列,構(gòu)成等比數(shù)列,若對任意的數(shù)列,均有,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列、滿足:,,,.
(1)求,,,;
(2)求證:數(shù)列是等差數(shù)列,并求的通項公式;
(3)設,若不等式對任意恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐中,底面是正方形,平面,,是的中點.
(1)求證:平面平面;
(2)求二面角的大小;
(3)試判斷所在直線與平面是否平行,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,.已知函數(shù),.
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)已知函數(shù)和的圖象在公共點(x0,y0)處有相同的切線,
(i)求證:在處的導數(shù)等于0;
(ii)若關(guān)于x的不等式在區(qū)間上恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時需要將圓錐的頂端剪去,剪去部分和接頭忽略不計,已知圓柱的底面周長為,高為,圓錐的母線長為.
(1)求這種“籠具”的體積(結(jié)果精確到0.1);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個“籠具”,該材料的造價為每平方米8元,共需多少元?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過多年的運作,“雙十一”搶購活動已經(jīng)演變成為整個電商行業(yè)的大型集體促銷盛宴.為迎接2018年“雙十一”網(wǎng)購狂歡節(jié),某廠家擬投入適當?shù)膹V告費,對網(wǎng)上所售產(chǎn)品進行促銷.經(jīng)調(diào)查測算,該促銷產(chǎn)品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中,a為正常數(shù)).已知生產(chǎn)該產(chǎn)品還需投入成本萬元(不含促銷費用),每一件產(chǎn)品的銷售價格定為元,假定廠家的生產(chǎn)能力完全能滿足市場的銷售需求.
(1)將該產(chǎn)品的利潤y萬元表示為促銷費用x萬元的函數(shù);
(2)促銷費用投入多少萬元時,廠家的利潤最大?并求出最大利潤的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com