【題目】某研究機(jī)構(gòu)為了了解各年齡層對(duì)高考改革方案的關(guān)注程度,隨機(jī)選取了200名年齡在內(nèi)的市民進(jìn)行了調(diào)查,并將結(jié)果繪制成如圖所示的頻率分布直方圖(分第一~五組區(qū)間分別為,,,,).

(1)求選取的市民年齡在內(nèi)的人數(shù);

(2)若從第3,4組用分層抽樣的方法選取5名市民進(jìn)行座談,再?gòu)闹羞x取2人在座談會(huì)中作重點(diǎn)發(fā)言,求作重點(diǎn)發(fā)言的市民中至少有一人的年齡在內(nèi)的概率.

【答案】(1)20;(2)

【解析】

1)選取的市民年齡在內(nèi)的頻率,即可求出人數(shù);

2)利用分層抽樣的方法從第3組選3,記為A1,A2A3從第4組選2人,記為B1,B2;再利用古典概型的概率計(jì)算公式即可得出.

(1)由題意可知,年齡在內(nèi)的頻率為,

故年齡在內(nèi)的市民人數(shù)為.

(2)易知,第3組的人數(shù),第4組人數(shù)都多于20,且頻率之比為,

所以用分層抽樣的方法在第3、4兩組市民抽取5名參加座談,

所以應(yīng)從第3,4組中分別抽取3人,2人.

記第3組的3名分別為,,第4組的2名分別為,,則從5名中選取2名作重點(diǎn)發(fā)言的所有情況為,,,,,,,,,共有10種.

其中第4組的2名至少有一名被選中的有:,,,,,共有7種,所以至少有一人的年齡在內(nèi)的概率為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】將函數(shù)的圖象,向右平移個(gè)單位長(zhǎng)度,再把縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù),則下列說(shuō)法正確的是( )

A. 函數(shù)的最小正周期為 B. 函數(shù)在區(qū)間上單調(diào)遞增

C. 函數(shù)在區(qū)間上的最小值為 D. 是函數(shù)的一條對(duì)稱軸

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)于任意的,都有且當(dāng)時(shí),,若.

(1)求證:為奇函數(shù);

(2)求證: 上的減函數(shù);

(3)求函數(shù)在區(qū)間[-2,4]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某項(xiàng)體能測(cè)試中,規(guī)定每名運(yùn)動(dòng)員必需參加且最多兩次,一旦第一次測(cè)試通過(guò)則不再參加第二次測(cè)試,否則將參加第二次測(cè)試.已知甲每次通過(guò)的概率為,乙每次通過(guò)的概率為,且甲乙每次是否通過(guò)相互獨(dú)立.

(Ⅰ)求甲乙至少有一人通過(guò)體能測(cè)試的概率;

(Ⅱ)記為甲乙兩人參加體能測(cè)試的次數(shù)和,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)為,點(diǎn)的坐標(biāo)為,點(diǎn)在拋物線上,且滿足,(為坐標(biāo)原點(diǎn)).

(1)求拋物線的方程;

(2)過(guò)點(diǎn)作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點(diǎn),與拋物線交于兩點(diǎn),線段的中點(diǎn)分別為,求證:直線過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)?/span>的函數(shù)滿足:對(duì)于任意的實(shí)數(shù)都有成立,且當(dāng)時(shí), 恒成立,且是一個(gè)給定的正整數(shù)).

1)判斷函數(shù)的奇偶性,并證明你的結(jié)論;

2)判斷并證明的單調(diào)性;若函數(shù)上總有成立,試確定應(yīng)滿足的條件;

3)當(dāng)時(shí),解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】是偶函數(shù),

(1) 求的值;

(2)當(dāng)時(shí),設(shè),若函數(shù)的圖象有且只有一個(gè)公共點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:

(1)求的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和

(3)在(2)的條件下,對(duì)任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案