【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,求實(shí)數(shù)m的取值范圍.

【答案】解:(Ⅰ)由f(x)≤3,得|x﹣a|≤3,
∴a﹣3≤x≤a+3,
又f(x)≤3的解集為[﹣1,5].
,解得:a=2;
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x﹣3)|=5.
又f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,
∴m≤5
【解析】(Ⅰ)由f(x)≤3求解絕對值的不等式,結(jié)合不等式f(x)≤3的解集為[﹣1,5]列式求得實(shí)數(shù)a的值;(Ⅱ)利用絕對值的不等式放縮得到f(x)+f(x+5)≥5,結(jié)合f(x)+f(x+5)≥m對一切實(shí)數(shù)x恒成立,即可求得實(shí)數(shù)m的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn)的雙曲線的右焦點(diǎn)為,右頂點(diǎn)為

)求雙曲線的方程;

)若直線與雙曲線交于不同的兩點(diǎn),,且線段的垂直平分線過點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C的方程為,點(diǎn)

求過點(diǎn)M且與圓C相切的直線方程;

過點(diǎn)M任作一條直線與圓C交于AB兩點(diǎn),圓Cx軸正半軸的交點(diǎn)為P,求證:直線PAPB的斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln(2ax+1)+ ﹣x2﹣2ax(a∈R).
(1)若x=2為f(x)的極值點(diǎn),求實(shí)數(shù)a的值;
(2)若y=f(x)在[3,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a=﹣ 時(shí),方程f(1﹣x)= 有實(shí)根,求實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線經(jīng)過點(diǎn),且斜率為

(I)求直線的方程;

)若直線平行,且點(diǎn)P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,且,設(shè)命題:函數(shù)上單調(diào)遞減;命題:函數(shù)上為增函數(shù),

(1)若“”為真,求實(shí)數(shù)的取值范圍

(2)若“”為假,“”為真,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直三棱柱 中, , , 是棱上的動(dòng)點(diǎn).

證明:

若平面分該棱柱為體積相等的兩個(gè)部分,試確定點(diǎn)的位置,并求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且和直線相切,記動(dòng)圓的圓心的軌跡為曲線.

(1)求曲線的方程;

(2)設(shè)曲線上一點(diǎn)的橫坐標(biāo)為,過的直線交于一點(diǎn),交軸于點(diǎn),過點(diǎn)的垂線交于另一點(diǎn),若的切線,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案