(2012•香洲區(qū)模擬)已知直線x=2及x=4與函數(shù)y=log2x圖象的交點分別為A,B,則AB直線方程為
x-2y=0
x-2y=0
分析:將x=2與x=4分別代入函數(shù)解析式中求出A與B的縱坐標(biāo),確定出A與B的坐標(biāo),利用兩點式即可確定出直線AB的解析式.
解答:解:由題意可知:A(2,1),B(4,2),
則直線AB方程為由兩點式y(tǒng)-2=
2-1
4-2
(x-4),即x-2y=0.
故答案為:x-2y=0
點評:此題考查了直線的一般式方程,確定出A與B的坐標(biāo)是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)如圖所示,將若干個點擺成三角形圖案,每條邊(包括兩個端點)有n(n>1,n∈N*)個點,相應(yīng)的圖案中總的點數(shù)記為an,則
9
a2a3
+
9
a3a4
+
9
a4a5
+…+
9
a2012a2013
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)已知向量
a
,
b
滿足|
a
|=1,|
b
|=
2
,
a
b
=1
,則
a
b
的夾角為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)已知橢圓C的焦點在x軸上,中心在原點,離心率e=
3
3
,直線l:y=x+2與以原點為圓心,橢圓C的短半軸為半徑的圓O相切.
(I)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左、右頂點分別為A1,A2,點M是橢圓上異于Al,A2的任意一點,設(shè)直線MA1,MA2的斜率分別為kMA1,kMA2,證明kMA1kMA2為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)如圖,直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=4,BC=4,BB1=3,M、N分別是B1C1和AC的中點.
(1)求異面直線AB1與C1N所成的角;
(2)求三棱錐M-C1CN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)模擬)已知向量
m
=(-2sinx,-1),
n
=(-cosx,cos2x)
,定義f(x)=
m
n

(1)求函數(shù)f(x)的表達式,并求其單調(diào)增區(qū)間;
(2)在銳角△ABC中,角A、B、C對邊分別為a、b、c,且f(A)=1,bc=8,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊答案